Proton Exchange Membrane Fuel Cells – Fundamentals and Applications 質子交換膜燃料電池 --- 原理與應用 C. W. Lin Department of Chemical Engineering National Yunlin University.

Slides:



Advertisements
Similar presentations
Fuel Cells and a Nanoscale Approach to Materials Design Chris Lucas Department of Physics Outline PEM fuel cells (issues) A nanoscale approach to materials.
Advertisements

Introduction to Fuel Cells
PH 0101 Unit-5 Lecture-61 Introduction A fuel cell configuration Types of fuel cell Principle, construction and working Advantage, disadvantage and application.
B Y A LLEN D E A RMOND AND L AUREN C UMMINGS.  Generates electric power using a fuel and an oxidant  Unlike a battery, chemicals are not stored in the.
FUEL CELLS Mikael Paronen FD, Avdelningschef Företagsekonomi. Medie och teknik ARCADA.
Proton exchange membranes: materials, theory and modelling
Unit 6 Fuel Cells
Study Of Fuel Cell By:- Sunit Kumar Gupta
Hydrogen Fuel Cell. Trends in the Use of Fuel 19 th century: steam engine 20 th century: internal combustion engine 21 st century: fuel cells.
FUEL CELL.
Stacey Bent, Stanford UniversityLecture on Sustainable Energy; Fuel Cells Sources of Energy A favorite form of energy is electricity Where does electricity.
Hydrogen electrolysis Hydrogen electrolysis is the process of running an electrical current through water (H 2 O) and separating the hydrogen from the.
Nanotechnology in Hydrogen Fuel Cells By Morten Bakker "Energy & Nano" - Top Master in Nanoscience Symposium 17 June 2009.
1 Speaker: Chun-Yang Hsieh Advisor : Wen-Chang Wu Date : Preparation and Characterization of Pt/SnO 2 /C Cathode Catalyst for Proton Exchange.
1 Fuel Cells ME 252 Thermal-Fluid Systems G. Kallio.
Lecture 18 Chapter 10 Electricity. Ohm’s Law & Power Resistance behavior in metals, semiconductors, superconductors Series vs. parallel resistances.
Fuel Cell Car Atoms and Subatomic Particles Atoms are composed of Protons, Neutrons, and Electrons Protons are positive, neutrons are neutral, and electrons.
Electrochemistry for Engineers
Hydrogen Fuel Cells Maddie Droher. What is a fuel cell? An energy conversion device set to replace combustion engines and additional batteries in a number.
Tennesse Technological University
By: Adam B and Marshall L.  What are the different types of fuel cells? Compare, Contrast and describe at least three.
Current uses and facts. Proton Exchange Membrane Fuel Cells were developed by General Electric in the 1960s Current Fuel Cells use Hydrogen gas and Oxygen.
WHAT IS A “FUEL CELL?” Generates electricity by a chemical reaction Produces heat, water, and at times nitrogen oxide Hydrogen and Oxygen Individual cells.
Hydrogen Fuel Cell Cars: Transporting Our Futures.
Studies on Direct Methanol Fuel Cell: An electro-chemical energy conversion device Jay Pandey Research Scholar Department of Chemical Engineering Indian.
Dept. of Power Mechanical Engineering, National Tsing Hua University Kai Fei, Chao-Jen Tsai (Research students), Che-Wun Hong (Professor) Thermal Lattice.
Water Formation and Flooding Phenomena in Proton Exchange Membrane Fuel Cells Yi-Shen Chen a, Chin-Hsiang Cheng a,*, Chun-I Lee b, Shiauh-Ping Jung b,
Fuel cells. Fuel cell history  First demonstrated in principle by British Scientist Sir Willliam Robert Grove in  Grove’s invention was based.
MOLTEN CARBONATE FUEL CELLS ANSALDO FUEL CELLS: Experience & Experimental results Filippo Parodi /Paolo Capobianco (Ansaldo Fuel Cells S.p.A.) Roma, 14th.
Fuel Cell Thermodynamics
MATERIALS FOR CLEAN ENERGY TECHNOLOGIES ARUMUGAM MANTHIRAM Electrochemical Energy Laboratory
 fuel cell = device that generates electricity by a chemical reaction.  Every fuel cell has two electrodes, one positive and one negative, called, respectively,
(in the U.S. in 1997, cents per kWh) coalnucleargasoilwindsolar 2.1 ¢2.3 ¢ 3.6 ¢ 3.9 ¢ 5.5 ¢ 22 ¢ Nuclear Energy Institute, American Wind Energy Association,
How does a modern fuel cell work ? Yuuya Hirai.
A Discussion of Fuel Cells with particular reference to Direct Methanol Fuel Cells (DMFC’s) Outline Fuel Cell Definition Principle of operation Components:
1 Fuel cells, myths and facts PhD candidate Ole-Erich Haas.
Fuel Cell What is it?. It is: First of all, GENIOUS! (50-70% efficiency) Safe and green (Water as a byproduct) Expensive… (1000$/Kw 2002, 30$/Kw 2007)
Synthesis and Characterization of a tri- metal catalyst used for the water electrolyzer and fuel cell NFL Lab.1 STUT, Mechanical Engineering SPEACH : En-Xian.
Fuel cells An electrochemical conversion device Chemical reactions cause electrons (current) to flow Requires a fuel, an oxidant and an electrolyte ( a.
11 Introducing Fuel Cells Robert Rose Breakthrough Technologies Institute Inc.
By: Mardoqueo Hinojosa
Hydrogen Fuel Cell & Photovoltaics. Photovoltaics.
Multiscale Multiphysics Transport and Reaction Phenomena within SOFCs
Fuel cell.
FUEL CELLS JONATHAN GOHEEN. WHAT are fuel cells? Energy devices that continuously transform chemical energy to electrical energy. Fuel often used is Hydrogen.
 Fuel cells transform chemical energy from fuels such as hydrogen and methanol into electrical energy  The fuel is oxidised by oxygen from the air.
건국대학교 융합신소재공학 교수 김 화 중 1. What is Zeolite ? 3-D intracrystalline microporous alumino-silicate materials 2.
By: Adam B and Marshall L.  What are the different types of fuel cells? Compare, Contrast and describe at least three.
Noble Metals as Catalysts Oxidation of Methanol at the anode of a DMFC Zach Cater-Cyker 4/20/2006 MS&E 410.
Teknik Elektrokimia 15/16 Semester genap Instructor: Rama Oktavian Office Hr.: T , Th ; 13-15, F ;
Viktória B. Kovács| Fuel cells| © 2015 BMEGEENAG51 | D218 | | 1 FUEL CELLS Viktória Barbara KOVÁCS.
FUEL CELL. How Fuel Cells Work Fuel Cells Making power more efficiently and with less pollution.
Zeolite을 이용한 연료전지(Fuel Cell)
Fuel Cells Device that produces electricity from external supplies of fuel and oxidant. Types of Fuel cells 1)Proton Exchange membrane Fuel Cell (PEMFC)
FUEL CELLS Chapter 7. Types of Fuel Cells Fuel CellOperating Conditions Alkaline FC (AFC)Operates at room temp. to 80 0 C Apollo fuel cell Proton Exchange.
건국대학교 신소재공학 나노촉매소재 및 응용 연구실 김 화 중 1. What is Zeolite ? 3-D intracrystalline microporous alumino-silcate materials  PBU(Primary Building Unit)  SBU(Secondary.
Renewable Energy Part 3 Professor Mohamed A. El-Sharkawi
Objectives Understand how a fuel cell makes electricity
How does a modern fuel cell work?
12.3 Portable Sources of Electrical Energy: Electric Cells
Heteropoly acid Immobilization and Crosslinking in a Polymer Electrolyte Membrane for Fuel Cell Ruth Anyaeche, Andrew Motz, Mei-Chen Kuo, James L. Horan,
Fuel Cell Electric Prime Movers
H2-O2 FUEL CELL By Mrs. Anuja Kamthe.
Direct Natural Gas-fueled Hybrid Fuel Cell
12.3 Portable Sources of Electrical Energy: Electric Cells
Fuel Cells.
chapter3. Fuel cell types
Fuel Cell as An Automotive Prime Mover
Fuel Cell Electric & Hybrid Prime Movers
Proton Exchange Membrane Fuel Cell: How Does It Work?
Presentation transcript:

Proton Exchange Membrane Fuel Cells – Fundamentals and Applications 質子交換膜燃料電池 --- 原理與應用 C. W. Lin Department of Chemical Engineering National Yunlin University of Science & Technology

Fuel cell technology A Dream, Challenge Or A Necessity

Fuel cell as energy converter Chemical energy of the fuels Electrical energy conversion Thermal energy conversion Mechanical energy conversion

H2H2 H2H2 O2O2 O2O2 H + H + H + H O H H O H H National Yunlin University of Science & Technology Functional Polymer Lab. A fuel cell consists of two electrodes sandwiched around an electrolyte. Oxygen passes over one electrode and hydrogen over the other, generating electricity, water and heat.

High energy-conversion efficiency Thermodynamic efficiency for fuel cells and Carnot efficiency for heat engines

What is a fuel cell? Proton and hydroxyl conducting fuel cells

Modular design Fuel cells for different scale applications

Small transportation Can we apply small technologies to become more sustainable?

DMFC Application: Portable Power

DMFC: Working principle CH 3 OH+H 2 O   CO 2 +6H + +6e Anode O 2 +4H + +4e   2H 2 O Cathode CH 3 OHO2O2 H2OH2O e DRYDRY H2OH2OH2OH2O H + transport e fuel crossover CO2CO2 Catalyst poisoning Pt-CO

DMFC: Problems and possible solutions Methanol crossover Hybrid membranes, nanocomposites, etc Catalyst poisoning (Pt-CO) Better complex catalyst (Pt-X), higher temperature (>120°C) Slow “ water shift reaction ” (CH 3 OH+H 2 O  CO 2 +6H + +6e) below ~100 °C Better complex catalyst, higher temperature But the higher the temperature, the worse the water balance in membrane Water-free membranes?

PEMFC: Water balance in membrane Water balance in polymer membrane. H 2   2H + +2e Anode O 2 +4H + +4e   2H 2 O Cathode H + transport H 2 O diffusion Electro-osmotic drag H + (H 2 O) H 2 O diffusion H + transport H2H2 O2O2 H2OH2O ee DRYDRY WETWET H2OH2OH2OH2O

MEA 組成示意圖

Currently Used Proton Exchange Membrane(PEM)-Nafion 