16 sept. 2005 G.-F. Dalla BettaSCIPP Maurizio Boscardin a, Claudio Piemonte a, Alberto Pozza a, Sabina Ronchin a, Nicola Zorzi a, Gian-Franco Dalla Betta.

Slides:



Advertisements
Similar presentations
of Single-Type-Column 3D silicon detectors
Advertisements

Silicon Technical Specifications Review General Properties Geometrical Specifications Technology Specifications –Mask –Test Structures –Mechanical –Electrical.
Trapping in silicon detectors G. Kramberger Jožef Stefan Institute, Ljubljana Slovenia G. Kramberger, Trapping in silicon detectors, Aug , 2006,
Hartmut Sadrozinski US-ATLAS 9/22/03 Detector Technologies for an All-Semiconductor Tracker at the sLHC Hartmut F.W. Sadrozinski SCIPP, UC Santa Cruz.
SOGANG UNIVERSITY SOGANG UNIVERSITY. SEMICONDUCTOR DEVICE LAB. Power MOSFETs SD Lab. SOGANG Univ. Doohyung Cho.
P. Fernández-Martínez – Optimized LGAD Periphery25 th RD50 Workshop, CERN Nov Centro Nacional de MicroelectrónicaInstituto de Microelectrónica.
Giulio Pellegrini 4th SILC Collaboration Meeting, Dec. 2006, Barcelona, Spain Giulio Pellegrini 4th SILC Collaboration Meeting, Dec. 2006,
Alternative technologies for Low Resistance Strip Sensors (LowR) at CNM CNM (Barcelona), SCIPP (Santa Cruz), IFIC (Valencia) M. Ullán, V. Benítez, J. Montserrat,
128 September, 2005 Silicon Sensor for the CMS Tracker The Silicon Sensors for the Inner Tracker of CMS CMS Tracker and it‘s Silicon Strip Sensors Radiation.
Solid State Detectors-2
20th RD50 Workshop (Bari)1 G. PellegriniInstituto de Microelectrónica de Barcelona G. Pellegrini, C. Fleta, M. Lozano, D. Quirion, Ivan Vila, F. Muñoz.
Embedded Pitch Adapters a high-yield interconnection solution for strip sensors M. Ullán, C. Fleta, X. Fernández-Tejero, V. Benítez CNM (Barcelona)
Semiconductor detectors
Charge collection studies on heavily diodes from RD50 multiplication run G. Kramberger, V. Cindro, I. Mandić, M. Mikuž Ϯ, M. Milovanović, M. Zavrtanik.
Fabrication of Active Matrix (STEM) Detectors
Development of n-in-p planar pixel sensors with active edge for the ATLAS High-Luminosity Upgrade L. Bosisio* Università degli Studi di Trieste & INFN.
SILICON DETECTORS PART I Characteristics on semiconductors.
M. Bruzzi, the issue of p-type disuniformity, 7° RD50 Workshop, CERN, November 14-16, 2005 The issue of doping disuniformity in p-type MCz Si sensors M.
3D-FBK pixel sensors with CMS readout: first tests results M. Obertino, A. Solano, A. Vilela Pereira, E. Alagoz, J. Andresen, K. Arndt, G. Bolla, D. Bortoletto,
PROCESS AND DEVICE SIMULATION OF A POWER MOSFET USING SILVACO TCAD.
Lecture 23 OUTLINE The MOSFET (cont’d) Drain-induced effects Source/drain structure CMOS technology Reading: Pierret 19.1,19.2; Hu 6.10, 7.3 Optional Reading:
Planar Pixels Sensors Activities in France. Phase-2 and core R&D activities in France -Development of sensor simulations models -Sensor technology Edgeless/active.
Silicon detector processing and technology: Part II
MIT Lincoln Laboratory NU Status-1 JAB 11/20/2015 Advanced Photodiode Development 7 April, 2000 James A. Burns ll.mit.edu.
8 July 1999A. Peisert, N. Zamiatin1 Silicon Detectors Status Anna Peisert, Cern Nikolai Zamiatin, JINR Plan Design R&D results Specifications Status of.
Analysis of Edge and Surface TCTs for Irradiated 3D Silicon Strip Detectors Graeme Stewart a, R. Bates a, C. Corral b, M. Fantoba b, G. Kramberger c, G.
16th April 2008R. Bates Glasgow University Experience with an industrial vendor in the manufacture of 3D detectors R. Bates, C. Fleta, D. Pennicard, C.
Spencer/Ghausi, Introduction to Electronic Circuit Design, 1e, ©2003, Pearson Education, Inc. Chapter 3, slide 1 Introduction to Electronic Circuit Design.
Low Resistance Strip Sensors – RD50 Common Project – RD50/ CNM (Barcelona), SCIPP (Santa Cruz), IFIC (Valencia) Contact person: Miguel Ullán.
CERN, November 2005 Claudio Piemonte RD50 workshop Claudio Piemonte a, Maurizio Boscardin a, Alberto Pozza a, Sabina Ronchin a, Nicola Zorzi a, Gian-Franco.
N. Zorzi Trento, Feb 28 – Mar 1, 2005 Workshop on p-type detectors Characterization of n-on-p devices fabricated at ITC-irst Nicola Zorzi ITC-irst - Trento.
Simulations of 3D detectors
Update on TCAD Simulation Mathieu Benoit. Introduction The Synopsis Sentaurus Simulation tool – Licenses at CERN – Integration in LXBatch vs Engineering.
Technology Overview or Challenges of Future High Energy Particle Detection Tomasz Hemperek
1 Device Simulations & Hardware Developments for CBM STS Sudeep Chatterji CBM Group GSI Helmholtz Centre for Heavy Ion Research CBM Collaboration Meeting,
RD50 funding request Fabrication and testing of new AC coupled 3D stripixel detectors G. Pellegrini - CNM Barcelona Z. Li – BNL C. Garcia – IFIC R. Bates.
9 th “Trento” Workshop on Advanced Silicon Radiation Detectors Genova, February 26-28, 2014 Centro Nacional de MicroelectrónicaInstituto de Microelectrónica.
TCT measurements with SCP slim edge strip detectors Igor Mandić 1, Vladimir Cindro 1, Andrej Gorišek 1, Gregor Kramberger 1, Marko Milovanović 1, Marko.
Ljubljiana, 29/02/2012 G.-F. Dalla Betta Surface effects in double-sided silicon 3D sensors fabricated at FBK at FBK Gian-Franco Dalla Betta a, M. Povoli.
Jaakko Härkönen, 6th "Hiroshima" Symposium, Carmel, California, September Magnetic Czochralski silicon as detector material J. Härkönen, E. Tuovinen,
The Sixth International "Hiroshima" Symposium Giulio Pellegrini Technology of p-type microstrip detectors with radiation hard p-spray, p-stop and moderate.
CNM double-sided 3D strip detectors before and after neutron irradiation Celeste Fleta, Richard Bates, Chris Parkes, David Pennicard, Lars Eklund (University.
TCAD Simulation – Semiconductor Technology Computer-Aided Design (TCAD) tool ENEXSS 5.5, developed by SELETE in Japan Device simulation part: HyDeLEOS.
Giulio Pellegrini 27th RD50 Workshop (CERN) 2-4 December 2015 Centro Nacional de MicroelectrónicaInstituto de Microelectrónica de Barcelona 1 Status of.
Studies on n and p-type MCz and FZ structures of the SMART Collaboration irradiated at fluences from 1.0 E+14 to 5.6E+15 p cm -2 RD50 Trento Workshop ITC-IRST.
Simulation of new P-Type strip detectors 17th RD50 Workshop, CERN, Geneva 1/15 Centro Nacional de MicroelectrónicaInstituto de Microelectrónica de Barcelona.
Claudio Piemonte Firenze, oct RESMDD 04 Simulation, design, and manufacturing tests of single-type column 3D silicon detectors Claudio Piemonte.
P. Fernández-Martínez – Optimized LGAD PeripheryRESMDD14, Firenze 8-10 October Centro Nacional de MicroelectrónicaInstituto de Microelectrónica de.
Sabina Ronchin 1, Maurizio Boscardin 1, Nicola Zorzi 1, Gabriele Giacomini 1, Gian-Franco Dalla-Betta 2, Marco Povoli 3, Alberto Quaranta 2 ; Giorgio Ciaghi.
Latest news on 3D detectors IRST CNM IceMos. CNM 2 wafers fabricated Double side processing with holes not all the way through, (aka Irst) n-type bulk.
Trench detectors for enhanced charge multiplication G. Casse, D. Forshaw, M. Lozano, G. Pellegrini G. Casse, 7th Trento Meeting - 29/02 Ljubljana1.
Giulio Pellegrini Actividades 3D G. Pellegrini, C. Fleta, D. Quirion, JP Balbuena, D. Bassignana.
Deep Level Transient Spectroscopy study of 3D silicon Mahfuza Ahmed.
June T-CAD Simulations of 3D Microstrip detectors a) Richard Bates b) J.P. Balbuena,C. Fleta, G. Pellegrini, M. Lozano c) U. Parzefall, M. Kohler,
Rint Simulations & Comparison with Measurements
New Mask and vendor for 3D detectors
Characterization and modelling of signal dynamics in 3D-DDTC detectors
First production of Ultra-Fast Silicon Detectors at FBK
Irradiation and annealing study of 3D p-type strip detectors
Position Sensitive TCT Measurements with 3D-stc detectors
Cint of un-irr./irradiated 200μm devices
HG-Cal Simulation using Silvaco TCAD tool at Delhi University Chakresh Jain, Geetika Jain, Ranjeet Dalal, Ashutosh Bhardwaj, Kirti Ranjan CMS simulation.
Report from CNM activities
Production of 3D silicon pixel sensors at FBK for the ATLAS IBL
TCAD Simulations of Silicon Detectors operating at High Fluences D
Optional Reading: Pierret 4; Hu 3
Lecture #25 OUTLINE Device isolation methods Electrical contacts to Si
Enhanced Lateral Drift (ELAD) sensors
3D sensors: status and plans for the ACTIVE project
Fabrication of 3D detectors with columnar electrodes of the same doping type Sabina Ronchina, Maurizio Boscardina, Claudio Piemontea, Alberto Pozzaa, Nicola.
Presentation transcript:

16 sept G.-F. Dalla BettaSCIPP Maurizio Boscardin a, Claudio Piemonte a, Alberto Pozza a, Sabina Ronchin a, Nicola Zorzi a, Gian-Franco Dalla Betta b a ITC-irst, Microsystems Division, via Sommarive, Povo di Trento, Italy b DIT, University of Trento, Via Sommarive, 14, Povo di Trento, Italy Development of 3D detectors at ITC-irst

16 sept G.-F. Dalla Betta SCIPP Introduction Single-Type Column 3D detectors Simulation results Technological tests Fabrication of the first batch Preliminary electrical results Conclusion Outline

16 sept G.-F. Dalla Betta SCIPP Introduction ITC-irst is developing the process for the fabrication of 3D sensors. Framework: RD50 collaboration - for the development of radiation tolerant detectors INFN-PAT agreement We have started with a simplified process, since all necessary clean-room equipment is not available yet

16 sept G.-F. Dalla Betta SCIPP “Standard” 3D detectors - concept First 3D architecture, proposed by S.I. Parker et al. [1] in 1997: columnar electrodes of both doping types n-columns p-columns wafer surface ionizing particle Short distance between electrodes: low full depletion voltage short collection distance more radiation tolerant than planar detectors!! n-type substrate [1] S.I. Parker et al., Nucl. Instr. Meth. Phys. Res. A 395 (1997) 328 DRAWBACK: Fabrication process rather long and not standard, so mass production of 3D devices very critical and very expensive.

16 sept G.-F. Dalla Betta SCIPP “Standard” 3D detectors - fabrication Kenney et al. IEEE TNS, vol. 46, n. 4 (1999) 1) wafer bonding support wafer detector wafer 2) n+ hole definition and etching resist oxide 3) hole doping and filling n+ polysilicon 4) p+ hole definition and etching resist 5) hole doping and filling p+ polysilicon 6) Metal deposition and definition metal

16 sept G.-F. Dalla Betta SCIPP Single-Type-Column 3D detectors - concept Sketch of the detector: grid-like bulk contact ionizing particle cross-section between two electrodes n+n+ n+n+ electrons are swept away by the transversal field holes drift in the central region and diffuse towards p+ contact n-columns p-type substrate Etching and column doping performed only once Functioning:

16 sept G.-F. Dalla Betta SCIPP 3DSTC detectors - concept (2) Further simplification: not passing-through holes p-type substrate n + electrodes Uniform p+ layer Bulk contact is provided by a Backside uniform p+ implant single side process. No need of support wafer.

16 sept G.-F. Dalla Betta SCIPP TCAD Simulations - static (1) 3D simulations are necessary DEVICE3D tool by Silvaco Important to exploit the structure symmetries to minimize the region to be simulated n+n+ cell 50  m p-type substrate Wafer thickness: 300  m Holes: 5  m-radius 250  m-deep

16 sept G.-F. Dalla Betta SCIPP TCAD Simulations - static (2) Potential distribution (vertical cross-section) 0V -10V -5V 50  m 300  m Potential distribution (horizontal cross-section) null field regions -15V

16 sept G.-F. Dalla Betta SCIPP TCAD Simulations - static (3) Potential and Electric field along a cut-line from the electrode to the center of the cell To increase the electric field strength one can act on the substrate doping concentration Na=1e12 1/cm 3 Na=5e12 1/cm 3 Na=1e13 1/cm 3 Na=1e12 1/cm 3 Na=5e12 1/cm 3 Na=1e13 1/cm 3

16 sept G.-F. Dalla Betta SCIPP TCAD Simulations - dynamic (1) Current signal in response to an ionizing particle. Vertical tracks in 3 different positions Electron cloud evolution (b) n+n+ n+n+ n+n+ n+n+ a b c

16 sept G.-F. Dalla Betta SCIPP TCAD Simulations - dynamic (2) Case b. Case c. Nsub=1e12 cm -3 Nsub=5e12 cm -3 Nsub=1e13 cm -3 Nsub=1e12 cm -3 Nsub=5e12 cm -3 Nsub=1e13 cm -3 1ns 10ns Current (A) In the worst case the induced current peak is within 10ns For a hit 5  m from the electrode the peak is within 1ns.

16 sept G.-F. Dalla Betta SCIPP TCAD Simulations – critical points evidenced Long low tail in the current signal due to hole diffusion. Simulation have shown that this effect can be strongly minimized using passing-through electrodes. High electric field at the bottom of the hole. Anyway we should not reach critical values because of the low bias voltages needed. In case of p-spray isolation, high electric field at the column/p-spray junction. Again, may be of concern depending on the bias voltage needed.

16 sept G.-F. Dalla Betta SCIPP Technological tests - lithography as-deposited: Photoresist tends to penetrate inside the hole forming a thicker layer in these region after exposure and development: residual photoresist in the hole region Important to note that resist can be defined in the proximity of the hole. The resist trapped in the hole is removed after the process

16 sept G.-F. Dalla Betta SCIPP Technological tests - deposition SurfaceTopbotton Poly1m1m0.8  m0.7  m TEOS1m1m0.7  m0.6  m Poly and oxide deposition top bottom hole surface oxide poly oxide

16 sept G.-F. Dalla Betta SCIPP Technological tests – oxide growth Oxide Growth (500nm) in a 5  m diameter hole metal oxide hole top bottom

16 sept G.-F. Dalla Betta SCIPP hole Aluminum does not penetrate inside the hole contacts have to be made on the wafer surface aluminum Technological tests – metal sputtering

16 sept G.-F. Dalla Betta SCIPP initial oxide p + -doping of back Isolation: p-stop or p-spray masking for deep- RIE process deep-RIE (CNM, Barcelona-Spain) Fabrication process (1) oxide p-stop p + doping holes

16 sept G.-F. Dalla Betta SCIPP P-diffusion (no hole filling) Oxidation (hole passivation) Opening contacts Metal and sintering Fabrication process (2) P- diffused regions Hole passivation contacts metal

16 sept G.-F. Dalla Betta SCIPP Mask layout Small version of strip detectors Planar and 3D test structures “Low density layout” to increase mechanical robustness of the wafer “Large” strip-like detectors

16 sept G.-F. Dalla Betta SCIPP Mask Layout-Test structures 3D-Diode Pitch 80 µm 10x10 matrix Ø hole 10 µm 44 holes GR Standard (planar) test structures

16 sept G.-F. Dalla Betta SCIPP layout - strip detectors Mask layout - strip detectors metal p-stop hole Contact opening n+n+ AC and DC coupling Inter-columns pitch  m Two different p-stop layouts Holes Ø 6 or 10  m Inner guard ring (bias line)

16 sept G.-F. Dalla Betta SCIPP Fabrication run: main characteristics Substrate: Si High Resistivity, p-type,  FZ (500  m)  >5.0 k  cm  Cz (300  m)  >1.8 k  cm Wafers with lower resistivity are not easy to find Surface isolation:  p-stop  p-spray

16 sept G.-F. Dalla Betta SCIPP SEM micrographs Portion of a strip detector Top-side of a column strip Column-section 100  m 6  m metal oxide

16 sept G.-F. Dalla Betta SCIPP Electrical Characterization (1) Different sub-types and thicknesses 2% to 13% variation on single wafer Ileak measured below full depletion due to breakdown Standard (planar) test structures electrical parameters compatible with standard planar processes DRIE does not endanger device performances

16 sept G.-F. Dalla Betta SCIPP Electrical Characterization (2) IV measurements 3D-Diode P-stop P-spray I leak 20V 0.67 ±0.12 pA I leak 20V 0.33 ±0.24 pA CZ FZ diode ─ guard ring 10x10 matrix Ø hole 10 µm Pitch 80 µm Active area ~0.64 mm 2 diode ─ guard ring

16 sept G.-F. Dalla Betta SCIPP >50 I bias line [nA] Detectors count Electrical Characterization (3) Strip detectors Current 40V of 70 different devices 1detector: 230 columns x 64 strips on 1 cm 2 ~ columns average current per column < 1pA Good process yield FZ

16 sept G.-F. Dalla Betta SCIPP Conclusions A new type of 3D detector has been conceived which leads to a significant simplification of the process: hole etching performed only once no hole filling no wafer bonding First production is completed: Good electrical parameters (DRIE does not endanger device performance) Low leakage currents 100V for p-stop in 3D diodes Good yield for strip detectors (Current/hole < 1pA/column for 93% of detectors) Accurate analysis of CV measurement results is in progress with the aid of TCAD simulations …

Lateral depletion-voltage Preliminary “3d-diode”/GR capacitance measurements C int - Vback Weak capacitive coupling at very low voltages (conductive substrate layer between columns) ~ 5V lateral full depletion voltage (100µm pitch) Vback Capacitive coupling between 40 columns (100um=pitch, 150um depth) C int

Backplane full-depletion-voltage Preliminary “3d-diode”/back capacitance measurements C-V 1/C 2 -V Lateral depletion contribution to measured capacitance at low voltages Linear 1/C 2 vs V region corresponding to the same doping level of planar diodes Saturation capacitance corresponding to a depleted width of ~ 150µm)  Column depth ~ 150µm ~ 40V full depletion voltage (300µm wafer)