1 Narrow-Band Imaging surveys at z=7.7 with WIRCam (CFHT) and HAWK-I (VLT) J.-G. Cuby (LAM) Collaborators : B. Clément (LAM), P. Hibon (KIAS) J.Willis.

Slides:



Advertisements
Similar presentations
PI: Michele Cirasuolo Royal Observatory Edinburgh Collaborators: J. Dunlop, R. McLure, F. Cullen, R. Maiolino, R. Ivison, G. Wright, M. Swinbank, R. Sharples,
Advertisements

Probing the End of Reionization with High-redshift Quasars Xiaohui Fan University of Arizona Mar 18, 2005, Shanghai Collaborators: Becker, Gunn, Lupton,
Motivation 40 orbits of UDF observations with the ACS grism Spectra for every source in the field. Good S/N continuum detections to I(AB) ~ 27; about 30%
The Highest-Redshift Quasars and the End of Cosmic Dark Ages Xiaohui Fan Collaborators: Strauss,Schneider,Richards, Hennawi,Gunn,Becker,White,Rix,Pentericci,
Lyman-α Galaxies at High Redshift James E. Rhoads (Space Telescope Science Institute) with Sangeeta Malhotra, Steve Dawson, Arjun Dey, Buell Jannuzi, Emily.
21cm Lines and Dark Ages Naoshi Sugiyama Department of Physics and Astrophysics Nagoya University Furlanetto & Briggs astro-ph/ , Zaldarriaga et.
ESO Recent Results on Reionization Chris Carilli (NRAO) Dakota/Berkeley,August 2011 CO intensity mapping during reionization: signal in 3 easy steps Recent.
End of Cosmic Dark Ages: Observational Probes of Reionization History Xiaohui Fan University of Arizona New Views Conference, Dec 12, 2005 Collaborators:
Searching for the first galaxies Junxian Wang University of Science and Technology of China Beijing, June Warm greetings to KIAA-PKU from
ESO Recent Results on Reionization Chris Carilli (NRAO) LANL Cosmology School, July 2011 Review: constraints on IGM during reionization  CMB large scale.
Digging into the past: Galaxies at redshift z=10 Ioana Duţan.
University of Durham Astronomical Instrumentation Group ELT Science Case, Oxford, Report on work done for NIO GSMT book Simon Morris With Cedric.
15 years of science with Chandra– Boston 20141/16 Faint z>4 AGNs in GOODS-S looking for contributors to reionization Giallongo, Grazian, Fiore et al. (Candels.
Collaborators: F. Bian, Z. Cai, B. Clement, S.H. Cohen, R. Dave, E. Egami, X. Fan, K. Finlator, N. Kashikawa, H.B. Krug, I.D. McGreer, M. Mechtley, M.
The Most Distant Quasars: Probing the End of Cosmic Dark Ages Xiaohui Fan Steward Observatory The University of Arizona.
First Spectroscopic Evidence for High Ionization State and Low Oxygen Abundance in Lyα Emitters ( arXiv: , ApJ submitted ) subaru on 16/Jan/2013.
The Lyman Continuum Escape Fraction Harry Teplitz, Brian Siana, & Claudia Scarlata.
Collaborators: E. Egami, X. Fan, S. Cohen, R. Dave, K. Finlator, N. Kashikawa, M. Mechtley, K. Shimasaku, and R. Windhorst.
Deciphering the Ancient Universe with Gamma-Ray Bursts Nobuyuki Kawai (Tokyo Tech)
September 6— Starburst 2004 at the Institute of Astronomy, Cambridge Constraints on Lyman continuum flux escaping from galaxies at z~3 using VLT.
LBG s at z~5 K. Ohta (Kyoto Univ.) with I. Iwata (NAOJ, Okayama) M. Ando (Kyoto Univ.) M. Akiyama (NAOJ, Subaru) N. Tamura (Durham, UK) K. Aoki (NAOJ,
Primeval Starbursting Galaxies: Presentation of “Lyman-Break Galaxies” by Mauro Giavalisco Jean P. Walker Rutgers University.
High Redshift Massive Galaxies (BzKs & EIS-Deep3a and COSMOS Xu KONG collaborators :
Exploring the High-z Frontier — Galaxies at z  6 and beyond Haojing Yan (Carnegie Observatories) CCAPP/OSU Seminar April 8, 2008.
Simona Gallerani Constraining cosmic reionization models with QSOs, GRBs and LAEs observational data In collaboration with: A. Ferrara, X. Fan, T. Choudhury,
Post GP-WMAP Reionization: the morning after We need quantitative measures of Epoch of reionization (Z reion ) Neutral fractions Volume fraction of ionized/neutral.
The Properties of LBGs at z>5 Matt Lehnert (MPE) Malcolm Bremer (Bristol) Aprajita Verma (MPE) Natascha Förster Schreiber (MPE) and Laura Douglas (Bristol)
Masami Ouchi (Space Telescope Science Institute) for the SXDS Collaboration Cosmic Web Made of 515 Galaxies at z=5.7 Kona 2005 Ouchi et al ApJ, 620,
Dark Ages of Astronomy (Dark to Light) 2 Dark Ages z=1000 z=5.8 z=0.
Large Area Survey of Lyman Alpha Emitters Zheng Yale Center for Astronomy and Astrophysics Yale/WIYN One Degree Imager Survey Workshop Oct 3rd, 2009.
Z > 6 Surveys Represent the Current Frontier Motivation: - census of earliest galaxies (z=6,  =0.95 Gyr) - contribution of SF to cosmic reionization -
Masami Ouchi (STScI) Progress of the Wide-Field Deep Surveys for Galaxies at z=3-9.
3.SED Fitting Method Figure3. A plot between IRAC ch2 magnitudes (4.5  m) against derived stellar masses indicating the relation of the stellar mass and.
The Reionization and Galaxy Evolution Probed by z=7 Lyα Emitters Ota, 2007, PhD Thesis, Univ. Tokyo Iye, Ota, Kashikawa et al. 2006, Nature, 443, 186 Ota.
The First Constraint on the Reionization from GRBs: the Case of GRB Tomonori Totani (Kyoto) Nobuyuki Kawai, George Kosugi, Kentaro Aoki, Toru Yamada,
最近の z~7-8 LBG 探査 2009 年 10 月 28 日 鍛治澤 賢. 最近の z~7-8 LBG 探査の論文紹介 HUDF: HST/WFC3 HUDF: HST/WFC3 GOODS-S: HST/WFC3 GOODS-S: HST/WFC3 GOODS-S: VLT/HAWK-I GOODS-S:
1 VVDS: Towards a complete census of star formation at 1.4
Deep Survey of z=7 Lyα Emitters with the new red-sensitive CCDs on Subaru / Suprime-Cam Kazuaki Ota Cosmic Radiation Laboratory RIKEN M. Iye, N. Kashikawa.
Surveying the Universe with SNAP Tim McKay University of Michigan Department of Physics Seattle AAS Meeting: 1/03 For the SNAP collaboration.
Observational Constraints of of Reionization History in the JWST Era Observational Constraints of of Reionization History in the JWST Era Xiaohui Fan University.
FIRST LIGHT IN THE UNIVERSE Richard Ellis, Caltech 1.Role of Observations in Cosmology & Galaxy Formation 2.Galaxies & the Hubble Sequence 3.Cosmic Star.
The Distributions of Baryons in the Universe and the Warm Hot Intergalactic Medium Baryonic budget at z=0 Overall thermal timeline of baryons from z=1000.
The European Extremely Large Telescope Studying the first galaxies at z>7 Ross McLure Institute for Astronomy, Edinburgh University.
Evidence of a Fast Evolution of the UV Luminosity Function of LBGs beyond z=6 from a wide and deep HAWK-I Survey Andrea Grazian INAF - Osservatorio Astronomico.
Finding z  6.5 galaxies with HST’s WFC3 and their implication on reionization Mark Richardson.
Accelerated Evolution of Lya LF at z>7 and the Physical Pictures Akira Konno (Univ. of Tokyo, ICRR) Co-Investigators: M. Ouchi, Y. Ono, K. Shimasaku, T.
AGN Surveys Phil Outram University of Durham 17 th February 2005.
Simulations of Lyα emission: fluorescence, cooling, galaxies Jordi Miralda Escudé ICREA University of Barcelona, Catalonia Berkeley, Collaborators:
The star formation history of the local universe A/Prof. Andrew Hopkins (AAO) Prof. Joss Bland-Hawthorn (USyd.) & the GAMA Collaboration Madusha L.P. Gunawardhana.
From Avi Loeb reionization. Quest to the Highest Redshift.
Probing the Reionization Epoch in the GMT Era Xiaohui Fan (University of Arizona) Seoul/GMT Meeting Oct 5, 2010.
High-Redshift Galaxies from HSC Deep Surveys Kazuhiro Shimasaku (University of Tokyo) 1. Galaxy Evolution 2. Dropout Galaxies and Lyman α Emitters 3. Observing.
Observing galaxies at z = 8.8 — is it worth the effort? | Niels Bohr Institutet | Københavns Universitet Peter Laursen, with.
Clustering properties of normal and active galaxies at z~3 Harold Francke, PUC Postdoctoral Fellow (Leopoldo Infante) Thesis Adv.: Eric Gawiser (Rutgers),
Big Bang f(HI) ~ 0 f(HI) ~ 1 f(HI) ~ History of Baryons (mostly hydrogen) Redshift Recombination Reionization z = 1000 (0.4Myr) z = 0 (13.6Gyr) z.
Deep Surveys for High-z Galaxies with Hyper Suprime-Cam M. Ouchi (OCIW), K. Shimasaku (U. Tokyo), H. Furusawa (NAOJ), & HSC Consortium ≲ ≳≲ ≳
Quasar Surveys -- From Sloan to SNAP
Constraint on Cosmic Reionization from High-z QSO Spectra Hiroi Kumiko Umemura Masayuki Nakamoto Taishi (University of Tsukuba) Mini Workshop.
The distant Universe and something about gravitational waves.
A Search for High Redshift Galaxies behind Gravitationally Lensing Clusters Kazuaki Ota (Kyoto U) Johan Richard (Obs.Lyon), Masanori Iye (NAOJ), Takatoshi.
Elizabeth Stanway (UW-Madison) Andrew Bunker (Exeter) Star Forming Galaxies at z>5: Properties and Implications for Reionization With: Richard Ellis (Caltech)
Galaxies as Sources of Reionization Haojing Yan (Carnegie Observatories) Reionization Workshop at KIAA July 10, 2008 Haojing Yan (Carnegie Observatories)
FUSE and HST Observations of Helium II Absorption in the IGM: Implications for Seeing HI Re-ionization Gerard Kriss STScI.
Nature of Broad Line Region in AGNs Xinwen Shu Department of Astronomy University of Science and Technology of China Collaborators: Junxian Wang (USTC)
Epoch of Reionization  Cosmic Reionization: Neutral IGM ionized by the first luminous objects at 6 < z < 15 Evidence: CMB polarization (Komatsu+2009)
Dynamical Properties of Forming Galaxies at Redshift z > 5
Constraining Star Formation at z>7 Dan Stark (Caltech) Collaborators: Richard Ellis, Johan Richard, Avi Loeb, Eiichi Egami, Graham Smith, Andy Bunker,
Complex Lya Profiles in z=6.6 Ultraluminous Lya Emitters
Constraints on Star Forming Galaxies at z>6.5
Probing Reionization & Galaxy Evolution by High-z Lyα Emitters
Presentation transcript:

1 Narrow-Band Imaging surveys at z=7.7 with WIRCam (CFHT) and HAWK-I (VLT) J.-G. Cuby (LAM) Collaborators : B. Clément (LAM), P. Hibon (KIAS) J.Willis (Univ. Victoria), C.Lidman (ESO), S.Arnouts (CFHT), JP.Kneib (LAM), C.Willott (CADC),...

Ionized Neutral Reionized From Carilli

Dark Ages Age of Enlightenment Epoch of Reionization last phase of cosmic evolution to be tested bench-mark in cosmic structure formation indicating the first luminous structures From Carilli

Re-ionization 4 When did it start ? When did it start ? When did it end ? When did it end ? What sources caused it, … What sources caused it, … Gunn-Peterson trough in QSOs Gunn-Peterson trough in QSOs GRBs GRBs UVLF & Ly  LF of Ly  Emitters (LAEs) UVLF & Ly  LF of Ly  Emitters (LAEs) CMB CMB HI 21-cm HI 21-cm

GP trough with QSOs 5 Only traceable until neutral fraction (HI / H) < 10 −3 Only traceable until neutral fraction (HI / H) < 10 −3

Re-ionization with GRBs Totani et al DLA model with z=6.295, log N HI = From Totani

UVLF & Ly  LF of Ly  Emitters (LAEs) Current status 7

Lyα LF ( Observed ) z=5.7Phot■ z=6.6Phot● z=6.6Spec▲ z=7.0Spec ◆ Lyα Luminosity log[L(Lyα ) erg/s] Number density log[n(>L ) Mpc - 3 ] Decline in n(>L) ・ galaxy evolution? ・ increase in HI? ・ both? z=7LAE detection limit From Ota

Far-UV Luminosity function of LBGs Data from SDF Yoshida et al. 2006, ApJ, in press Shimasaku et al. 2005, PASJ, 57, 447 (z=4, 5) (z=6) Bright LBGs decrease in number with redshift (see however Iwata et al. 2003, PASJ, 55, 415) luminosity functions From Shimasaku

Lyman α luminosity function of LAEs Data from SXDF Ouchi, Murozono et al In prep Number density of LAEs unchanged over 3<z<6 Fraction of ‘young’ galaxies increases with redshift? Data from SDF Shimasaku et al. 2006, PASJ, 58, 313 (z=5.7) luminosity functions From Shimasaku

… but the number density decreases beyond z=5.7 Ouchi et al. 2006, in press intrinsic evolution of LAEs? Increase in the neutral fraction of the IGM is more likely, as the change in the far-UV LF is much milder. Data for z=6.5 : Kashikawa et al. 2006, ApJ, 648, 7 (SDF) Data for z=5.7 : Shimasaku et al. 2006, PASJ, 58, 313 (SDF) Ouchi et al. in prep (SXDF) Data for z=7.0 : Iye et al. 2006, Nature, 443, 186 (SDF) From Shimasaku

Fan et al.2006 ARAA Redshift z Reionization History Neutral Fraction X HI z=7 z=6.6 Lyα Emitters

Going beyond z = 7 13

nm 1190 nm Sky Spectra in Emission and Transmission

z = 7.7 survey with WIRCAM The DATA NB 1.06  m, 40 hrs NB 1.06  m, 40 hrs u*, g’, r’, i’, z’ u*, g’, r’, i’, z’ CFHT-LS data (D1) J & Ks J & Ks 5 hrs WIRCAM 3.6, 4.5  m 3.6, 4.5  m SWIRE (IRAC) 15

16 Candidate selection InstrumentBand Int. time (hrs) Lim. Mag.  ”   MegaCamu* MegaCam g’g’g’g’ MegaCam r’r’r’r’ MegaCam i’i’i’i’ MegaCam z’z’z’z’ WIRCam NB 1st epoch WIRCam NB 2nd epoch WIRCam NB combined WIRCamJ WIRCamKs IRAC 3.6 µm IRAC 4.5 µm Optical – NB > 3 Optical – NB > 4 for the brightest objects Criteria: Criteria: Detection in NB1, NB2, NB1+2. Detection in NB1, NB2, NB1+2. Non-detection in optical bands (u,g, r, i, z) Non-detection in optical bands (u,g, r, i, z) u* - NB1.06 > 2.2 u* - NB1.06 > 2.2 g’ - NB1.06 > 2.6 g’ - NB1.06 > 2.6 r’ - NB1.06 > 2.3 r’ - NB1.06 > 2.3 i’ - NB1.06 > 2.1 i’ - NB1.06 > 2.1 z’ - NB1.06 > 1.0 z’ - NB1.06 > 1.0 J - NB1.06 > -0.5 J - NB1.06 > -0.5 A Posteriori Rejection of the contaminants A Posteriori Rejection of the contaminants

17 A WIRCam candidate u Chi2 z NB1+2 J Ks

7 LAE at z = 7.7 candidates 7 LAE at z = 7.7 candidates 1 LBG at z > 7 candidate 1 LBG at z > 7 candidate 18

19 LF of z = 7.7 Ly  LAE Assumes that the 7 candidates are real Assumes that the 7 candidates are real Most serious candidates build up the bright end of the z=7.7 LF Most serious candidates build up the bright end of the z=7.7 LF -> bright end robust Hibon et al. submitted

Possible sources of contamination Electronic crosstalk Electronic crosstalk Guide windows Persistence Persistence Noise Noise Transients Transients 2 epoch data T-dwarfs T-dwarfs 20 EROs EROs K band rejection K band rejection Low z interlopers Low z interlopers Ha at z = 0.61 Ha at z = 0.61 [OIII] at z = 1.1 [OIII] at z = 1.1 [OII] at z = 1.8 [OII] at z = 1.8 High z (> 7) LBGs High z (> 7) LBGs

21 Example of electronic cross-talk on WIRCam

Possible LFs if contamination Samples of 4 objects out of 7, assuming 3 contaminants Samples of 4 objects out of 7, assuming 3 contaminants 20 ‘Bright’ samples w two brightest objects 10 ‘Intermediate’ samples w/o brightest but w second brightest 5 ‘Faint’ samples w/o the two brightest objects More evolution in density than in luminosity for ‘Full’, ‘Bright’ and ‘Intermediate’ samples More evolution in density than in luminosity for ‘Full’, ‘Bright’ and ‘Intermediate’ samples 22 Bright Intermediate Faint Iye et al., z = 6.96

Implications Using model from Kobayashi, we derive a neutral hydrogen fraction: Using model from Kobayashi, we derive a neutral hydrogen fraction: x HI = 0.4 for the ‘Full’ sample x HI = 0.4 for the ‘Full’ sample x HI = 0.6 for the ‘Faint’ sample x HI = 0.6 for the ‘Faint’ sample 23 Lyα Luminosity log[L(Lyα) erg/s] LAE evolution model (Kobayashi et al.2007) Number density log[n(>L) Mpc -3 ] Increase in HI Lyα LF ( Model vs. Observation )

On going program with HAWK-I (I) z = 7.7 z = hrs LP 100 hrs LP fields 4 fields 2 empty fields 2 empty fields 2 clusters 2 clusters 24

25 On going program with HAWK-I (II) Field: Cluster : 4 pointings more efficient in number of targets than a single pointing for t exp ~ 100 hrs. A few 10s of LAEs expected

26 Conclusions Spectroscopic follow-up (badly needed...) Spectroscopic follow-up (badly needed...) MOIRCS, x-shooter MOIRCS, x-shooter If bright objects are confirmed, more evolution in density than in luminosity (within the Schechter formalism) If bright objects are confirmed, more evolution in density than in luminosity (within the Schechter formalism) Future work: Future work: 2008 : HAWK-I 2008 : HAWK-I 2009 : VISTA 2009 : VISTA One NB1190 program in UltraVista (5-yr LP) One NB1190 program in UltraVista (5-yr LP) 2013 : JWST 2013 : JWST 2018 : ELT (EAGLE) 2018 : ELT (EAGLE)