Operating Systems CSE 411 CPU Management Oct. 13 2006 - Lecture 14 Instructor: Bhuvan Urgaonkar.

Slides:



Advertisements
Similar presentations
Chapter 6: Process Synchronization
Advertisements

5.1 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts with Java – 8 th Edition Chapter 5: CPU Scheduling.
Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition, Chapter 6: Process Synchronization.
Process Synchronization. Module 6: Process Synchronization Background The Critical-Section Problem Peterson’s Solution Synchronization Hardware Semaphores.
Operating Systems CMPSC 473 Mutual Exclusion Lecture 13: October 12, 2010 Instructor: Bhuvan Urgaonkar.
6.5 Semaphore Can only be accessed via two indivisible (atomic) operations wait (S) { while S
Synchronization Principles Gordon College Stephen Brinton.
Silberschatz, Galvin and Gagne  Operating System Concepts Chapter 7: Process Synchronization Background The Critical-Section Problem Synchronization.
Chapter 6: Process Synchronization. Outline Background Critical-Section Problem Peterson’s Solution Synchronization Hardware Semaphores Classic Problems.
Chapter 6: Process Synchronization. 6.2 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts – 7 th Edition, Feb 8, 2005 Objectives Understand.
Silberschatz, Galvin and Gagne ©2007 Operating System Concepts with Java – 7 th Edition, Nov 15, 2006 Process Synchronization (Or The “Joys” of Concurrent.
What we will cover… Process Synchronization Basic Concepts
1 School of Computing Science Simon Fraser University CMPT 300: Operating Systems I Ch 6: Process Synchronization Dr. Mohamed Hefeeda.
Lecture 11 Chapter 6: Process Synchronization (cont)
Synchronization Solutions
Instructor: Umar KalimNUST Institute of Information Technology Operating Systems Process Synchronization.
Chapter 6: Process Synchronization. 6.2 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts Interrupt Interrupt and Context Switching (Process.
Chapter 6: Process Synchronization. 6.2 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts – 7 th Edition, Feb 8, 2005 Module 6: Process Synchronization.
Adopted from and based on Textbook: Operating System Concepts – 8th Edition, by Silberschatz, Galvin and Gagne Updated and Modified by Dr. Abdullah Basuhail,
Operating Systems CSE 411 CPU Management Oct Lecture 13 Instructor: Bhuvan Urgaonkar.
Chapter 6: Process Synchronization. 6.2 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts – 7 th Edition, Feb 8, 2005 Background Concurrent.
Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition, Chapter 6: Process Synchronization.
6.3 Peterson’s Solution The two processes share two variables: Int turn; Boolean flag[2] The variable turn indicates whose turn it is to enter the critical.
Operating Systems CMPSC 473 Mutual Exclusion Lecture 14: October 14, 2010 Instructor: Bhuvan Urgaonkar.
Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition, Chapter 6: Process Synchronization.
Process Synchronization Background The Critical-Section Problem Peterson’s Solution Synchronization Hardware Semaphores Classic Problems of Synchronization.
1 Chapter 6: Process Synchronization Background The Critical-Section Problem Peterson’s Solution Special Machine Instructions for Synchronization Semaphores.
Silberschatz, Galvin and Gagne  Operating System Concepts Chapter 7: Process Synchronization Background The Critical-Section Problem Synchronization.
Chap 6 Synchronization. Background Concurrent access to shared data may result in data inconsistency Maintaining data consistency requires mechanisms.
Chapter 6: Synchronization. 6.2 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts Module 6: Synchronization Background The Critical-Section.
Chapter 6: Process Synchronization
Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 9 th Edition Chapter 5: Process Synchronization.
Chapter 6: Process Synchronization. 6.2 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts Module 6: Process Synchronization Background The.
Chapter 6: Process Synchronization. 6.2 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts Module 6: Process Synchronization Background The.
Chapter 6: Process Synchronization. 6.2 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts Module 6: Process Synchronization Background The.
Chapter 6: Process Synchronization. 6.2 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts Module 6: Process Synchronization Background The.
Chapter 6: Process Synchronization. 6.2 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts Module 6: Process Synchronization Background The.
Chapter 6: Process Synchronization. Module 6: Process Synchronization Background The Critical-Section Problem Peterson’s Solution Synchronization Hardware.
Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition, Chapter 6: Process Synchronization.
Operating Systems CMPSC 473 Mutual Exclusion Lecture 11: October 5, 2010 Instructor: Bhuvan Urgaonkar.
Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition, Lecture 11: Synchronization (Chapter 6, cont)
Operating Systems CSE 411 CPU Management Dec Lecture Instructor: Bhuvan Urgaonkar.
Process Synchronization CS 360. Slide 2 CS 360, WSU Vancouver Process Synchronization Background The Critical-Section Problem Synchronization Hardware.
CSE Operating System Principles Synchronization.
Silberschatz, Galvin and Gagne  2002 Modified for CSCI 399, Royden, Operating System Concepts Operating Systems Lecture 22 Semaphores Classic.
Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition Chapter 6: Process Synchronization.
Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9 th Edition Chapter 5: Process Synchronization.
Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition Chapter 6: Process Synchronization.
Chapter 6 Synchronization Dr. Yingwu Zhu. The Problem with Concurrent Execution Concurrent processes (& threads) often access shared data and resources.
6.1 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition Chapter 6: Synchronization Background The Critical-Section Problem Peterson’s.
6.1 Silberschatz, Galvin and Gagne ©2005 Operating System Principles 6.5 Semaphore Less complicated than the hardware-based solutions Semaphore S – integer.
Chapter 6: Process Synchronization
Process Synchronization
Chapter 5: Process Synchronization
Process Synchronization: Semaphores
Auburn University COMP 3500 Introduction to Operating Systems Synchronization: Part 4 Classical Synchronization Problems.
Chapter 5: Process Synchronization
Chapter 5: Process Synchronization
Chapter 6: Process Synchronization
Chapter 6: Process Synchronization
Process Synchronization
Topic 6 (Textbook - Chapter 5) Process Synchronization
Chapter 6: Process Synchronization
Semaphore Originally called P() and V() wait (S) { while S <= 0
Process Synchronization
Module 7a: Classic Synchronization
CMPT 300: Operating Systems I
Lecture 2 Part 2 Process Synchronization
Chapter 6: Process Synchronization
Chapter 6: Synchronization Tools
Presentation transcript:

Operating Systems CSE 411 CPU Management Oct Lecture 14 Instructor: Bhuvan Urgaonkar

Some announcements Will discuss Exam 1 on Monday –Hopefully also hand-out the graded exam The question on Quiz 4 comparing RR and PS has puzzled many –Has been removed –Will describe what I had intended on Monday Project –Arjun will hold extra TA hours on Saturday 4-6pm

Comments on Peterson’s Approach This is a purely software approach, and it does not require any support from hardware except atomic loads and stores However, it may cause "busy waiting” –Wastes CPU cycles

Synchronization Hardware Many systems provide hardware support for critical section code Modern machines provide special atomic hardware instructions Atomic = non-interruptible –Either test memory word and set value –Or swap contents of two memory words

TestAndndSet Instruction Definition: boolean TestAndSet (boolean *target) { boolean rv = *target; *target = TRUE; return rv: }

Solution using TestAndSet Shared boolean variable lock, initialized to false Solution: while (true) { while ( TestAndSet (&lock )) ; /* do nothing // critical section lock = FALSE; // remainder section }

Swap Instruction Definition: void Swap (boolean *a, boolean *b) { boolean temp = *a; *a = *b; *b = temp: }

Solution using Swap Shared Boolean variable lock initialized to FALSE; Each process has a local Boolean variable key. Solution: while (true) { key = TRUE; while ( key == TRUE) Swap (&lock, &key ); // critical section lock = FALSE; // remainder section }

Notes –Previous solutions do not satisfy bounded-waiting requirement –Figure 6.8 describes how to do this –Implementing these instructions on multiprocessors can be quite difficult –Also, complicated for a programmer to use Is there an easier and more efficient way? Semaphores

Semaphore Semaphore –noun 1.an apparatus for conveying information by means of visual signals, as a light whose position may be changed. 2.any of various devices for signaling by changing the position of a light, flag, etc. 3.a system of signaling, esp. a system by which a special flag is held in each hand and various positions of the arms indicate specific letters, numbers, etc.

Semaphore Synchronization tool that reduces busy waiting Invented by Edsger Wybe Dijkstra –First used in THE operating system –Dijkstra is also noted for owning only one computer (late in life) and rarely actually using them, in keeping with his conviction that computer science was more abstract than mere programming, expressed in a number of famous sayings such as "Computer Science is no more about computers than astronomy is about telescopes."

Semaphore Synchronization tool that does not require busy waiting Semaphore S – integer variable Two standard operations modify S: wait() and signal() –Originally called P() and V() From Dutch words/phrases probeer te verlagen (try-and-decrease) and verhoog ("increase”) Less complicated Can only be accessed via two indivisible (atomic) operations – wait (S) { while S <= 0; // no-op S--; } – signal (S) { S++; }

Semaphore as General Synchronization Tool Counting semaphore – integer value can range over an unrestricted domain –Synchronize access to a resource with multiple copies/instances Binary semaphore – integer value can range only between 0 and 1; can be simpler to implement –Also known as mutex locks (MUTUAL EXCLUSION) Can implement a counting semaphore S as a binary semaphore Provides mutual exclusion –Semaphore S; // initialized to 1 –wait (S); Critical Section signal (S);

Semaphore Implementation with no Busy waiting With each semaphore there is an associated waiting queue. A waiting queue has two data items: – value (of type integer) – pointer to a list of PCBs Introduce a pointer in the PCB structure –FIFO ordering => bounded-waiting Two operations: –block – place the process invoking the operation on the appropriate waiting queue. –wakeup – remove one of processes in the waiting queue and place it in the ready queue. Is busy waiting completely gone?

Semaphore Implementation with (almost) no Busy waiting Implementation of wait: wait (S){ value--; if (value < 0) { add this process to waiting queue block(); } } Implementation of signal: Signal (S){ value++; if (value <= 0) { remove a process P from the waiting queue wakeup(P); } }

Deadlock and Starvation Deadlock – two or more processes are waiting indefinitely for an event that can be caused by only one of the waiting processes Let S and Q be two semaphores initialized to 1 P 0 P 1 wait (S); wait (Q); wait (Q); wait (S);. signal (S); signal (Q); signal (Q); signal (S); Starvation – indefinite blocking. A process may never be removed from the semaphore queue in which it is suspended.

Classical Problems of Synchronization Bounded-Buffer Problem Readers and Writers Problem Dining-Philosophers Problem

Bounded-Buffer Problem N buffers, each can hold one item Semaphore mutex initialized to the value 1 Semaphore full initialized to the value 0 Semaphore empty initialized to the value N

Bounded Buffer Problem (Cont.) The structure of the producer process while (true) { // produce an item wait (empty); wait (mutex); // add the item to the buffer signal (mutex); signal (full); }

Bounded Buffer Problem (Cont.) The structure of the consumer process while (true) { wait (full); wait (mutex); // remove an item from buffer signal (mutex); signal (empty); // consume the removed item }

Readers-Writers Problem A data set is shared among a number of concurrent processes –Readers – only read the data set; they do not perform any updates –Writers – can both read and write. Problem – allow multiple readers to read at the same time. Only one writer can access the shared data at the same time. Shared Data –Data set –Semaphore mutex initialized to 1. –Semaphore wrt initialized to 1. –Integer readcount initialized to 0.

Readers-Writers Problem (Cont.) The structure of a writer process while (true) { wait (wrt) ; // writing is performed signal (wrt) ; }

Readers-Writers Problem (Cont.) The structure of a reader process while (true) { wait (mutex) ; readcount ++ ; if (readcount == 1) wait (wrt) ; signal (mutex) // reading is performed wait (mutex) ; readcount - - ; if (readcount == 0) signal (wrt) ; signal (mutex) ; }

Dining-Philosophers Problem Shared data –Bowl of rice (data set) –Semaphore chopstick [5] initialized to 1

Dining-Philosophers Problem (Cont.) The structure of Philosopher i: while (true) { wait ( chopstick[i] ); wait ( chopStick[ (i + 1) % 5] ); // eat signal ( chopstick[i] ); signal (chopstick[ (i + 1) % 5] ); // think }

Problems with Semaphores Correct use of semaphore operations: – signal (mutex) …. wait (mutex) – wait (mutex) … wait (mutex) – Omitting of wait (mutex) or signal (mutex) (or both)

Synchronization on Multi-processors

Monitors

System Bootstrap

Multi-processor Scheduling

Some History

UNIX

The POSIX Standard

Course Outline Resource Management (and some services an OS provides to programmers) CPU management  Memory management –I/O management (emphasis: Disk) Cross-cutting design considerations and techniques –Quality-of-service/fairness, monitoring, accounting, caching, software design methodology, security and isolation Advanced topics –Distributed systems –Data centers, multi-media systems, real-time systems, virtual machines