Ralf Siebenmorgen Toulouse June’10  Dust model of the ISM  PAH bands in starburst nuclei  Monte Carlo radiative transfer  PAH destruction in T Tauri.

Slides:



Advertisements
Similar presentations
Optical Constants used in Radiative Transfer Models A look at calculated Qabs and Qscat Jeremy Yates UCL.
Advertisements

Unstructured grids for Astrophysics Gas dynamics and radiative transfer C.P. Dullemond Max Planck Institute for Astronomy Heidelberg, Germany.
The formation of stars and planets Day 3, Topic 3: Irradiated protoplanetary disks Lecture by: C.P. Dullemond.
Dust emission from Haebes: Disks and Envelopes A. Miroshnichenko (Pulkovo/Toledo) Z. Ivezic (Princeton) D. Vinkovic (UK) M. Elitzur (UK) ApJ 475, L41 (1997;
Planet Formation Topic: Disk thermal structure Lecture by: C.P. Dullemond.
Ralf Siebenmorgen Köln 2012 ISM dust model Monte Carlo dust radiative transfer Proto-planetary disks: ring-like structures PAH destruction in proto-planetary.
Dust particles and their spectra. Review Ge/Ay 132 Final report Ivan Grudinin.
Efficient Monte Carlo continuum radiative transfer with SKIRT Maarten Baes 2 nd East-Asia Numerical Astrophysics Meeting, Daejeon, Korea 3 November 2006.
Heating and Cooling 10 March 2003 Astronomy G Spring 2003 Prof. Mordecai-Mark Mac Low.
To date: Observational manifestations of dust: 1.Extinction – absorption/scattering diminishes flux at wavelengths comparable to light – implies particles.
The Interstellar Medium Astronomy 315 Professor Lee Carkner Lecture 19.
Stars science questions Origin of the Elements Mass Loss, Enrichment High Mass Stars Binary Stars.
Excesos IR F   Discos “flared ”
Constraining TW Hydra Disk Properties Chunhua Qi Harvard-Smithsonian Center for Astrophysics Collaborators : D.J. Wilner, P.T.P. Ho, T.L. Bourke, N. Calvet.
Chemistry and line emission of outer protoplanetary disks Inga Kamp Introduction to protoplanetary disks and their modeling Introduction to protoplanetary.
Model SEDs of Massive YSOs Barbara Whitney, Tom Robitaille, Remy Indebetouw, Kenny Wood, and Jon Bjorkman.
(pre-ALMA) The size scales are too small even for the largest current & near-term arrays. Spectroscopy to the rescue? How can we probe gas in the planet-forming.
Jonathan Slavin Harvard-Smithsonian CfA
Chemical and Physical Structures of Massive Star Forming Regions Hideko Nomura, Tom Millar (UMIST) ABSTRUCT We have made self-consistent models of the.
SPARX: Simulation Platform for Astrophysical Radiative Xfer SPARX, a new numerical program for non-LTE radiative transfer has been developed. In order.
Monte Carlo Radiation Transfer in Protoplanetary Disks: Disk-Planet Interactions Kenneth Wood St Andrews.
Astrophysics from Space Lecture 8: Dusty starburst galaxies Prof. Dr. M. Baes (UGent) Prof. Dr. C. Waelkens (KUL) Academic year
6 th IRAM 30m Summer School Star formation near and far A. Fuente Observatorio Astronómico Nacional (OAN, Spain) Photon Dominated Regions I. Physical conditions.
SCATTERING OF RADIATION Scattering depends completely on properties of incident radiation field, e.g intensity, frequency distribution (thermal emission.
Molecular Hydrogen Emission from Protoplanetary Disks Hideko Nomura (Kobe Univ.), Tom Millar (UMIST) Modeling the structure, chemistry and appearance of.
I. Origin of the dust emission from Tycho’s SNR II. Mapping observations of [Fe II] lines and dust emission of IC443 by IRSF & AKARI III. Summary AKARI.
Ralf Siebenmorgen MIR on ELT’s The Mid-infrared on ELT’s MIR recommended to be essential (3 – 25µm)
Modeling Disks of sgB[e] Stars Jon E. Bjorkman Ritter Observatory.
Ralf Siebenmorgen Crete 2010 AGN dust model of 3CR sources  MIR imaging & spectroscopy  ISM dust model & PAH  vectorized Monte Carlo model  SED of.
Photoionisation of Supernova Driven, Turbulent, MHD Simulations of the Diffuse Ionised Gas Jo Barnes 1, Kenny Wood 1, Alex Hill 2 [1]University of St Andrews,
Imaging gaps in disks at mid-IR VLT VISIR image 8.6 PAH 11.3 PAH 19.8  m large grains => gap! Geers et al IRS48 -Gap seen in large grains, but NOT.
Modeling Planetary Systems Around Sun-like Stars Paper: Formation and Evolution of Planetary Systems: Cold Outer Disks Associated with Sun-like Stars,
Non-symetrical Protoplanetary Disks Annibal Hetem Jr. (FAFIL/FSA) Jane Gregorio-Hetem (IAG/USP)
Constraints on small grains from ISO, Spitzer data: Towards predicting the cm-emission of PAHs L. Verstraete N. FlageyIAS, Orsay M. Compiègne.
1 / 31 Reionization of Universe: 3D Radiative Transfer Simulations T. Nakamoto (Univ. of Tsukuba) 1. Why Reionization ? 2. TsuCube Project 3. Toward a.
Science with continuum data ALMA continuum observations: Physical, chemical properties and evolution of dust, SFR, SED, circumstellar discs, accretion.
Monte Carlo Radiation Transfer in Circumstellar Disks Jon E. Bjorkman Ritter Observatory.
A-Ran Lyo KASI (Korea Astronomy and Space Science Institute) Nagayoshi Ohashi, Charlie Qi, David J. Wilner, and Yu-Nung Su Transitional disk system of.
The Sun, our favorite star!
Deciphering the interplay between starlight and disks: Where is the gas? Gerrit van der Plas From disks to planets: Learning from starlight, March 18 th.
Kenneth Wood St Andrews
1 Grain Growth in Protoplanetary Disks: the (Sub)Millimeter Sep 11, 2006 From Dust to Planetesimals, Ringberg David J. Wilner Harvard-Smithsonian Center.
Color Maps of the Ohio State University Bright Spiral Galaxy Survey Melissa Butner, Austin Peay State University Susana Deustua, advisor.
Subaru AO high-spatial-resolution IR K- and L-band search for buried dual AGNs in merging galaxies Masatoshi Imanishi ( 今西昌俊 ) NAOJ/Subaru Telescope Imanishi+14.
1 The Red Rectangle Nebula excited by excited species Nadine Wehres, Claire Romanzin, Hans Van Winckel, Harold Linnartz, Xander Tielens.
The Meudon PDR code on complex ISM structures F. Levrier P. Hennebelle, E. Falgarone, M. Gerin (LERMA - ENS) F. Le Petit (LUTH - Observatoire de Paris)
Primordial Disks: From Protostar to Protoplanet Jon E. Bjorkman Ritter Observatory.
Simulated [CII] 158 µm observations for SPICA / SAFARI F. Levrier P. Hennebelle, E. Falgarone, M. Gerin (LERMA - ENS) F. Le Petit (LUTH - Observatoire.
5-9th September 2011 SED2011 conference A new model for the infrared emission of IRAS F Andreas Efstathiou European University Cyprus.
8 -The Interstellar Medium. Emission-Line Nebulae H II Regions Planetary Nebulae Supernova Remnants.
The Birth of Stars and Planets in the Orion Nebula K. Smith (STScI)
New results on the giant dark silhouette disk dd in the Orion Nebula. Anna Miotello Massimo Robberto August 12 th, 2011 Physics.
Ringberg1 The gas temperature in T- Tauri disks in a 1+1-D model Bastiaan Jonkheid Frank Faas Gerd-Jan van Zadelhoff Ewine van Dishoeck Leiden.
Basic Definitions Specific intensity/mean intensity Flux
MOLECULAR HYDROGEN IN THE CIRCUMSTELLAR ENVIRONMENT OF HERBIG Ae/Be STARS Claire MARTIN 1 M. Deleuil 1, J-C. Bouret 1, J. Le Bourlot 2, T. Simon 3, C.
ISM & Astrochemistry Lecture 1. Interstellar Matter Comprises Gas and Dust Dust absorbs and scatters (extinguishes) starlight Top row – optical images.
The Physics of Galaxy Formation. Daniel Ceverino (NMSU/Hebrew U.) Anatoly Klypin, Chris Churchill, Glenn Kacprzak (NMSU) Socorro, 2008.
Stellar Birth Dr. Bill Pezzaglia Astrophysics: Stellar Evolution 1 Updated: 10/02/2006.
“SPITZER observations of luminous obscured Quasars” Enrica Bellocchi in collaboration with A. Comastri, F. Pozzi, C. Vignali, J. Fritz, L. Pozzetti on.
Astromineralogy of Protoplanetary Disks (and other astrophysical objects) Steve Desch Melissa Morris Arizona State University.
Planet and Gaps in the disk
Radiative transfer in galactic disks…
Dust extinction, emission & polarisation in the diffuse ISM
Mario van den Ancker – ESO Garching
National Observatory of Athens
Interferometric 3D observations of LIRGs
Galactic Astronomy 銀河物理学特論 I Lecture 1-6: Multi-wavelength properties of galaxies Seminar: Draine et al. 2007, ApJ, 663, 866 Lecture: 2011/11/14.
Some considerations on disk models
Infrared emission from dust and gas in galaxies
John DeVries1,2, Dr. Neal Turner2, and Dr. Susan Terebey1,2
Presentation transcript:

Ralf Siebenmorgen Toulouse June’10  Dust model of the ISM  PAH bands in starburst nuclei  Monte Carlo radiative transfer  PAH destruction in T Tauri disks Frank Heymann (PhD) Endrik Krűgel

Ralf Siebenmorgen Toulouse June’10 dust’1990

Ralf Siebenmorgen Toulouse June’10 spheroids 1: polarisation Voshchinnikov (2004)

Ralf Siebenmorgen Toulouse June’10 2: ‘’2200” bump + 3: PAH absorption Vertraete et al Malloci et al Schutte et al PAH gr

Ralf Siebenmorgen Toulouse June’10 Si + aC : 60Å < a < µm, ~a -3.5 Graphite: 5Å < a < 80 Å, ~a -3.5 PAH : 30, 200 C ISM [g]: 0.66Si aC gr PAH [g] extinction’2010

Ralf Siebenmorgen Toulouse June’10 mean I S R F

Ralf Siebenmorgen Toulouse June’10 “Carbon crisis” abundances [ppm]: 31Si + 150aC + 50gr + 30PAH 4: abundance + 5: PAH bands

Ralf Siebenmorgen Toulouse June’10 dust’2010

Ralf Siebenmorgen Toulouse June’10 ISO Boulanger et al. (1998) Siebenmorgen et al. (1998) HD97300

Ralf Siebenmorgen Toulouse June’10 Siebenmorgen et al. (2001) NGC1808 Radiative transfer in SB

Ralf Siebenmorgen Toulouse June’10 post ISO 17 features

Ralf Siebenmorgen Toulouse June’10 Siebenmorgen et al. (2001) post ISO

Ralf Siebenmorgen Toulouse June’10 Siebenmorgen et al. (2007) post Spitzer SED model grid: luminosity size mass

Ralf Siebenmorgen Toulouse June’10 high z Efstathiou & Siebenmorgen (2009)

Ralf Siebenmorgen Toulouse June’10 Original code by Krűgel (2006) Arbitrary dust distribution Pseudo adaptive mesh 1. geometry Monte Carlo

Ralf Siebenmorgen Toulouse June’10 1. geometry 2. source Source emits “photon packages” of equal energy Monte Carlo

Ralf Siebenmorgen Toulouse June’10 1. geometry 2. source 3. inter-action 4. dust temperature absorption / scattering / no interaction Monte Carlo = - ln( ζ)

Ralf Siebenmorgen Toulouse June’10 Photons escape model cloud Monte Carlo 1. geometry 2. source 3. inter-action 4. temperature 5. detection

Ralf Siebenmorgen Toulouse June’10  store PAH absorption events of each cell  compute PAH emission  neglect PAH self absorption Monte Carlo + PAH

Ralf Siebenmorgen Toulouse June’10 Multiple photons at a time: MC parallelization 1.Cell locked when hit by photon 2.Parallel random number generator (Mersene Twister) 3.Computer games Graphical Processing Units (CUDA)

Ralf Siebenmorgen Toulouse June’10 1D benchmark sphere Iveciz (99)

Ralf Siebenmorgen Toulouse June’10 1D benchmark sphere T * = 2500K ρ (r) = const. A V = mag ~5% for 0

Ralf Siebenmorgen Toulouse June’10 Method ParallelizationAdvantage Time Benchmark sphere τ~1000) Lucy YES (but floating) Optical thin>1h Bjorkman & Wood Partly (not independent) No iteration5min ourYESGPU<1min MC methods

Ralf Siebenmorgen Toulouse June’10 Monte Carlo + PAH

Ralf Siebenmorgen Toulouse June’10 Disk: T * = 5800K L * = L sun ρ (r) : hydro static equilibrium (Chiang & Goldreich 1997) Pascucci et al (2004) 2D benchmark

Ralf Siebenmorgen Toulouse June’10 2D benchmark disk 0 ~10% for face-on edge-on 1 =

Ralf Siebenmorgen Toulouse June’10 3D proto-planetary disk + spiral MHD (Fargo) density T * = 5800K L * = L sun A v =10mag 8au 3au

Ralf Siebenmorgen Toulouse June’10 3D proto-planetary disk + spiral

Ralf Siebenmorgen Toulouse June’10 ELT 42m PAH imaging

Ralf Siebenmorgen Toulouse June’10 D = 50pc 50mas at 11.3μm PSF dual band + coronograph ELT 42m PAH imaging

Ralf Siebenmorgen Toulouse June’10 D = 50pc 50mas at 11.3μm PAH imaging gap /px (μJy /px)

Ralf Siebenmorgen Toulouse June’10 PAH detection rate: Herbig AeBe 60% TTS 10% T Tauri stars

Ralf Siebenmorgen Toulouse June’10 T Tauri stars

Ralf Siebenmorgen Toulouse June’10

PAH in a mono-energetic heating bath if | U f – U i – hν | < ½ ΔU f : A fi = K ν F ν / hν Siebenmorgen & Krűgel (2010)

Ralf Siebenmorgen Toulouse June’10 Arrhenius form: t dis ~ exp(E o /kT) / ν 0 « t cool /f ~ 1s T min = E o /k ln(ν 0 ) ~2000K; E b ~ 5eV; ν 0 = Hz ΔE = 3N c kT min ~ 0.1 N c. E o => N c < 2 ΔE /[eV] (PAH unstable) EoEo T [K] time t cool t abs ~ 1h Omont (1986); Micedlotta et al. (2010); Tielens (2005) Unimolecular dissociation: PAH destruction

Ralf Siebenmorgen Toulouse June’10 Unimolecular dissociation: t dis ~ exp(E o /kT) / ν 0 « t cool /f ~ 1s T min = E o /k ln(ν 0 ) ~2000K; E o ~ 5eV ΔE = 3N c kT min ~ 0.1 N c. E o => N c < 2 ΔE /[eV] (PAH unstable) EoEo PAH destruction 1) single hard photon : independent of distance 2) many soft photons : ~ 1AU

Ralf Siebenmorgen Toulouse June’10 Stationary disk Sufficient X-ray photons? α ℓ τ = 1 z I } # C in PAH # hard γ absorption/sec << TT phase ‘PAH removal time’ top surface layer Σ ℓ = α/κ = h ν ∙ 4 π r 2 /Lκ

Ralf Siebenmorgen Toulouse June’10 Vertical mixing in disk? ℓ /v ┴ = t exp > N C t abs PAH replenishment Siebenmorgen & Krűgel (2010)

Ralf Siebenmorgen Toulouse June’10 Future  Heating: photosph.+FEUV + X-rays  Dust + Gas  Density structure  PAH emission + destruction MC model of T Tauri disks

Ralf Siebenmorgen Toulouse June’10 Conclusion ?