Ultracold Polar Molecules in Gases and Lattices Paul S. Julienne Joint Quantum Institute, NIST and The University of Maryland Quantum Technologies Conference:

Slides:



Advertisements
Similar presentations
Bose-Bose Mixtures: atoms, molecules and thermodynamics near the Absolute Zero Bose-Bose Mixtures: atoms, molecules and thermodynamics near the Absolute.
Advertisements

Fermi-Bose and Bose-Bose quantum degenerate K-Rb mixtures Massimo Inguscio Università di Firenze.
Hyperfine-Changing Collisions of Cold Molecules J. Aldegunde, Piotr Żuchowski and Jeremy M. Hutson University of Durham EuroQUAM meeting Durham 18th April.
Ultracold Quantum Gases: An Experimental Review Herwig Ott University of Kaiserslautern OPTIMAS Research Center.
H 2 CO OH H2OH2O HCO QED e- Quantum dipolar gas Precision test Chemical reactions Quantum measurement Cold and Ultracold Molecules EuroQUAM, Durham, April.
Coherence, Dynamics, Transport and Phase Transition of Cold Atoms Wu-Ming Liu (刘伍明) (Institute of Physics, Chinese Academy of Sciences)
Understanding Feshbach molecules with long range quantum defect theory Paul S. Julienne Joint Quantum Institute, NIST and The University of Maryland EuroQUAM.
Ultracold Alkali Metal Atoms and Dimers: A Quantum Paradise Paul S. Julienne Atomic Physics Division, NIST Joint Quantum Institute, NIST/U. Md 62 nd International.
Making cold molecules from cold atoms
Ultracold Atoms, Mixtures, and Molecules
World of ultracold atoms with strong interaction National Tsing-Hua University Daw-Wei Wang.
The Efimov Effect in Ultracold Gases Weakly Bounds Systems in Atomic and Nuclear Physics March , 2010 Institut für Experimentalphysik, Universität.
World of zero temperature --- introduction to systems of ultracold atoms National Tsing-Hua University Daw-Wei Wang.
Quantum Entanglement of Rb Atoms Using Cold Collisions ( 韓殿君 ) Dian-Jiun Han Physics Department Chung Cheng University.
Observation of universality in 7 Li three-body recombination across a Feshbach resonance Lev Khaykovich Physics Department, Bar Ilan University,
Universality in ultra-cold fermionic atom gases. with S. Diehl, H.Gies, J.Pawlowski S. Diehl, H.Gies, J.Pawlowski.
Cold Atomic and Molecular Collisions
Stability of a Fermi Gas with Three Spin States The Pennsylvania State University Ken O’Hara Jason Williams Eric Hazlett Ronald Stites Yi Zhang John Huckans.
New physics with polar molecules Eugene Demler Harvard University Outline: Measurements of molecular wavefunctions using noise correlations Quantum critical.
Lecture II Non dissipative traps Evaporative cooling Bose-Einstein condensation.
1 Cold molecules Mike Tarbutt LMI Lecture, 05/11/12.
ULTRACOLD COLLISIONS IN THE PRESENCE OF TRAPPING POTENTIALS ZBIGNIEW IDZIASZEK Institute for Quantum Information, University of Ulm, 18 February 2008 Institute.
Dynamics of Quantum- Degenerate Gases at Finite Temperature Brian Jackson Inauguration meeting and Lev Pitaevskii’s Birthday: Trento, March University.
Universal thermodynamics of a strongly interacting Fermi gas Hui Hu 1,2, Peter D. Drummond 2, and Xia-Ji Liu 2 1.Physics Department, Renmin University.
T. Koch, T. Lahaye, B. Fröhlich, J. Metz, M. Fattori, A. Griesmaier, S. Giovanazzi and T. Pfau 5. Physikalisches Institut, Universität Stuttgart Assisi.
ATOM-ION COLLISIONS ZBIGNIEW IDZIASZEK Institute for Quantum Information, University of Ulm, 20 February 2008 Institute for Theoretical Physics, University.
Cold Atomic and Molecular Collisions 1. Basics 2. Feshbach resonances 3. Photoassociation Paul S. Julienne Quantum Processes and Metrology Group Atomic.
INTRODUCTION TO PHYSICS OF ULTRACOLD COLLISIONS ZBIGNIEW IDZIASZEK Institute for Quantum Information, University of Ulm, 14 February 2008 Institute for.
Experiments with Trapped Potassium Atoms Robert Brecha University of Dayton.
Three-body recombination at vanishing scattering lengths in ultracold atoms Lev Khaykovich Physics Department, Bar-Ilan University, Ramat Gan, Israel.
Photoassociation Spectroscopy of Ultracold Molecules Liantuan XIAO State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser.
Few-body physics with ultracold fermions Selim Jochim Physikalisches Institut Universität Heidelberg.
Experiments with ultracold RbCs molecules Peter Molony Cs Rb.
Critical stability of a dipolar Bose-Einstein condensate: Bright and vortex solitons Sadhan K. Adhikari IFT - Instituto de Física Teórica UNESP - Universidade.
E. Kuhnle, P. Dyke, M. Mark, Chris Vale S. Hoinka, Chris Vale, P. Hannaford Swinburne University of Technology, Melbourne, Australia P. Drummond, H. Hu,
Interference of Two Molecular Bose-Einstein Condensates Christoph Kohstall Innsbruck FerMix, June 2009.
Progress Towards Formation and Spectroscopy of Ultracold Ground-state Rb 2 Molecules in an Optical Trap H.K. Pechkis, M. Bellos, J. RayMajumder, R. Carollo,
Elastic collisions. Spin exchange. Magnetization is conserved. Inelastic collisions. Magnetization is free. Magnetic properties of a dipolar BEC loaded.
Efimov Physics with Ultracold Atoms Selim Jochim Max-Planck-Institute for Nuclear Physics and Heidelberg University.
Physics and Astronomy Dept. Kevin Strecker, Andrew Truscott, Guthrie Partridge, and Randy Hulet Observation of Fermi Pressure in Trapped Atoms: The Atomic.
Experimental study of Efimov scenario in ultracold bosonic lithium
Maykel L. González-Martínez ultracold temperatures October 3 th, Bordeaux.
Trap loss of spin-polarized 4 He* & He* Feshbach resonances Joe Borbely ( ) Rob van Rooij, Steven Knoop, Wim Vassen.
Efimov physics in ultracold gases Efimov physics in ultracold gases Rudolf Grimm “Center for Quantum Optics” in Innsbruck Austrian Academy of Sciences.
Collaborations: L. Santos (Hannover) Former members: R. Chicireanu, Q. Beaufils, B. Pasquiou, G. Bismut A.de Paz (PhD), A. Sharma (post-doc), A. Chotia.
Prospects for ultracold metastable helium research: phase separation and BEC of fermionic molecules R. van Rooij, R.A. Rozendaal, I. Barmes & W. Vassen.
Experiments with an Ultracold Three-Component Fermi Gas The Pennsylvania State University Ken O’Hara Jason Williams Eric Hazlett Ronald Stites John Huckans.
Experimental determination of Universal Thermodynamic Functions for a Unitary Fermi Gas Takashi Mukaiyama Japan Science Technology Agency, ERATO University.
Application of the operator product expansion and sum rules to the study of the single-particle spectral density of the unitary Fermi gas Seminar at Yonsei.
Ultracold Helium Research Roel Rozendaal Rob van Rooij Wim Vassen.
Atoms in optical lattices and the Quantum Hall effect Anders S. Sørensen Niels Bohr Institute, Copenhagen.
Optical lattices for ultracold atomic gases Sestri Levante, 9 June 2009 Andrea Trombettoni (SISSA, Trieste)
D. Jin JILA, NIST and the University of Colorado $ NIST, NSF Using a Fermi gas to create Bose-Einstein condensates.
An atomic Fermi gas near a p-wave Feshbach resonance
Jerzy Zachorowski M. Smoluchowski Institute of Physics, Jagiellonian University Nonlinear Spectroscopy of Cold Atoms, Preparations for the BEC Experiments.
Precision collective excitation measurements in the BEC-BCS crossover regime 15/06/2005, Strong correlations in Fermi systems A. Altmeyer 1, S. Riedl 12,
Dipolar relaxation in a Chromium Bose Einstein Condensate Benjamin Pasquiou Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse - France.
Collisional loss rate measurement of Cesium atoms in MOT Speaker : Wang guiping Date : December 25.
Production and control of KRb molecules Exploring quantum magnetisms with ultra-cold molecules.
Functional Integration in many-body systems: application to ultracold gases Klaus Ziegler, Institut für Physik, Universität Augsburg in collaboration with.
Phase separation and pair condensation in spin-imbalanced 2D Fermi gases Waseem Bakr, Princeton University International Conference on Quantum Physics.
Agenda Brief overview of dilute ultra-cold gases
Maykel L. González-Martínez Laurent Bonnet and Pascal Larrégaray Statistical Product-State Distributions for Cold Exoergic Reactions in External Fields.
Deterministic preparation and control of a few fermion system.
Extremely dilute, but strongly correlated: Experiments with ultracold fermions.
Center for Quantum Physics Innsbruck Center for Quantum Physics Innsbruck Austrian Academy of Sciences Austrian Academy of Sciences University strongly.
TC, U. Dorner, P. Zoller C. Williams, P. Julienne
Making cold molecules from cold atoms
Laboratoire de Physique des Lasers
Ultracold polar molecules in a 3D optical lattice
Presentation transcript:

Ultracold Polar Molecules in Gases and Lattices Paul S. Julienne Joint Quantum Institute, NIST and The University of Maryland Quantum Technologies Conference: Manipulating photons, atoms, and molecules August 29 - September 3, 2010, Torun, Poland Experiments by K.-K. Ni, S. Ospelkaus, D. Wang, M. H. G. de Miranda, A. Pe’er, B. Neyenhuis, J. J. Zirbel, D. S. Jin, J. Ye (JILA/NIST) Thanks to Zbigniew Idziaszek (Warsaw) Andrea Micheli, Guido Pupillo, Peter Zoller (Innsbruck) John Bohn, Goulven Quéméner (JILA) Svetlana Kotochigova (Temple), Robert Moszynski (Warsaw)

Evaporative cooling  BEC (  K-nK) Trapped quantum gases, lattices Precision control, measurement (atomic clocks) Well-characterized Laser cooling, an enabling technology (mK-  K) Controlling collisions and inter-species interactions are a key: Coherent interactions (scattering length) Decoherence, loss (rate constant, time scale) Building blocks for quantum science and technology for the future

7 Li 6 Li Interactions: a = scattering length Truscott, Strecker, McAlexander, Partridge, Hulet, Science 291, 2570 (2001)

s-wave scattering phase shift Wavelength  2  / k Noninteracting atoms R  R = 0 Interacting atoms Phase shift

S. Inouye, M. R., Andrews, J. Stenger, H.-J. Miesner, D. M. Stamper-Kurn, and W. Ketterle, “Observation of Feshbach resonances in a Bose-Einstein condensate,” Nature 392, 151–154 (1998). Change Scattering length (relative sale) Number of Atoms (x10 5 ) Atom loss Change Mean field

From Greiner and Fölling, Nature 435, 736 (2008) Optical trap 1D Lattice (“pancakes”) 40 K 87 Rb

From I. Bloch, Nature Physics 1, 23 (2005) 2D Lattice (“tubes”) 3D Lattice (“dots”) 133 Cs 2

Dipoles: 1/R 3 interaction

Similar method had been proposed by Jaksch, Venturi, Cirac, Williams, and Zoller, Phys. Rev. Lett. 89, (2002) for making non-polar Rb 2 in a lattice. Example with KRb molecule

K 87 Rb molecules v=0, J=0, single spin level 200 to 800 nK Density ≈ cm -3 KRb 1. Prepare mixed atomic gas 1 2. Magneto-association to Feshbach molecule 2 3. Optically switch to v=0 ground state 3

Cs

Molecular collisions: simple or complex? Collisions are a key to the control and stability of ultracold gases and lattices. "Quantum-State Controlled Chemical Reactions of Ultracold KRb Molecules," S. Ospelkaus, K.K. Ni, D. Wang, M.H.G. de Miranda, B. Neyenhuis, G. Quéméner, P.S. Julienne, J.L. Bohn, D.S. Jin, and J. Ye. Science 327, 853 (2010). “Universal rate constants for reactive collisions of ultracold molecules,” Z. Idziaszek and P. S. Julienne, Phys. Rev. Lett. 104, (2010) Add an optical lattice: “Universal rates for reactive ultracold polar molecules in reduced dimensions,” A. Micheli, Z. Idziaszek, G. Pupillo, M. A. Baranov, P. Zoller, and P. S. Julienne, Phys. Rev. Lett. (to be published) arXiv: Simple but adequate theoretical models for the next generation of experiments. Add an electric field: “A Simple Quantum Model of Ultracold Polar Molecule Collisions”, Z. Idziaszek, G. Quéméner, J.L. Bohn, P.S. Julienne, Phys. Rev. A 82, R (2010)

Two kinds of collisions Elastic: bounce off each other Loss: go to different products Example: KRb + KRb  K 2 + Rb 2 Elastic cross section: Loss cross section: = S-matrix element for the entrance channel Rate constant:

40 K 87 Rb v=0, N=0 I( 40 K) = 4 (9 levels) + I( 87 Rb) = 3/2 (4 levels) makes 36 levels total

Apply to 40 K 87 Rb collisions KRb + KRb’ 0.8x cm 3 /s 1.9(4)x cm 3 /s s-wave Measured Universal KRb + KRb 1.1(3)x10 -5 cm 3 /s/K0.8(1)x10 -5 cm 3 /s/K p-wave K + KRb 1.1x cm 3 /s 1.7(3)x cm 3 /s s-wave Universal rate limit, van der Waals potentials C 6 from S. Kotochigova and R. Mosyznski  a = 6.2(2) nm Non-identical (s-wave): Identical fermions (p-wave): S. Ospelkaus et al., Science 327, 853 (2010) Z. Idziaszek and P. S. Julienne, Phys. Rev. Lett. 104, (2010)

Add an electric field Numerical coupled channels at large R QDT universal boundary conditions at small R Universal K for 40 K 87 Rb mass, C 6 Z. Idziaszek, G. Quéméner, J.L. Bohn, P.S. Julienne, Phys. Rev. A 82, R (2010)

Scales of various interactions Energy Length Chemical van der Waals Dipolar Trap KRb at 50 kHz Kinetic KRb at 200 nK

1. Pick a reference problem we can solve e.g. van der Waals potential, B. Gao, Parameterize dynamics by a few “physical” parameters and apply QDT tools 3. Take advantage of separation of energy, length scales Preparation, control: E/h ≈ kHz Long range: GHz Short range (chemical): > THz Quantum defect theory

Our approach “Hybrid” quantum defect theory (QDT) QDT theories are not unique Toolbox of pieces to assemble Short range 2 QDT parameters: s, phase, scattering length y, reaction, flux loss Long range Numerical, coupled channels or approximations Reduced dimension effects (quasi-2D, quasi-1D) Special case: y=1, “universal” rate constants (independent of s). Collision rates controlled by quantum scattering by the long range V.

200 THz AB Chemistry: Reactions Inelastic events Short range R0R0 1 nm Long range -C 6 /R 6 Analytic long-range theory (B. Gao) a _ 20 GHz 6 nm Experimentally prepared separated species Properties of separated species 20 kHz (1  K) A+B dB > 500 nm Trap: a h ≈ 50 nm Dipole: a d Explosion happens

Long range Asymptotic Cold species prepared Chemistry Scatter off long-range potential “Universal” van der Waals rate constants Lost Reflect “Black hole” model A+B

QDT model Partial Absorption 0 ≤ y ≤ 1 s = a/a and y Parameterised by R0R0 1 nm a _ 6 nm Universal(vdW): Dipole: numerical (coupled channels) vdW: analytic

s-wave collision summary Complex scattering length a-ib If only a single s-wave channel,

S. Ospelkaus, K.-K. Ni, D. Wang, M. H. G. de Miranda, B. Neyenhuis, G. Quéméner, P. S. Julienne, J. L. Bohn, D. S. Jin, and J. Ye, Science 327, 853 (2010). JILA Experiment MQDT universal rate MQDT non-universal rate y=0.4

Add an electric field KRb has y =0.8 Hypothetical less reactive molecule

Reactive collisions in an electric field E/k B =250 nK

Elastic collisions in an electric field E/k B =250 nK

From Piotr S. Zuchowski and Jeremy M. Hutson, arXiv: All reactions making a trimer + an atom are energetically uphill. Dimer reactions AB + AB  A 2 + B 2 U = likely Universal, reactive loss NR = Non-Universal, non-reactive What about other species?

d=0.2 Debye d=0 Like fermions m=1

Quasi-2D KRb fermions 50 kHz trap dashed: unitarized Born dashed: semiclassical (instanton)

Physical dipole

Quasi-2D KRb E/k B = 240 nK

Some ultracold reactions can be understood simply QDT = versatile and powerful theory for molecular collisions: Takes advantage of scale separation of long and short range Analytic or numerical implementations More can be built into the model (e.g., threshold exit channels) Include effects of E, B, EM fields Predicts different classes of molecules, e.g., Universal, no resonances: KRb Non-reactive, lots of resonances: RbCs, also Cs 2 QDT extends to reduced dimension (with numerical long-range for dipoles) Stable 2D and 1D dipolar gases should be possible even for strongly reactive species.