UPoN Lyon 2008 G. Albareda 1 G.Albareda, D.Jimenez and X.Oriols Universitat Autònoma de Barcelona - Spain E.mail: Can analog and.

Slides:



Advertisements
Similar presentations
by Alexander Glavtchev
Advertisements

6.1 Transistor Operation 6.2 The Junction FET
R. van Langevelde, A.J. Scholten Philips Research, The Netherlands
Single Electron Devices Single-electron Transistors
Metal Oxide Semiconductor Field Effect Transistors
Nanostructures Research Group Center for Solid State Electronics Research Quantum corrected full-band Cellular Monte Carlo simulation of AlGaN/GaN HEMTs.
Metal-Oxide-Semiconductor Fields Effect Transistors (MOSFETs) From Prof. J. Hopwood.
1 Analysis of Strained-Si Device including Quantum Effect Fujitsu Laboratories Ltd. Ryo Tanabe Takahiro Yamasaki Yoshio Ashizawa Hideki Oka
From analog to digital circuits A phenomenological overview Bogdan Roman.
Comparison of Non-Equilibrium Green’s Function and Quantum-Corrected Monte Carlo Approaches in Nano MOS Simulation H. Tsuchiya A. Svizhenko M. P. Anantram.
International Workshop of Computational Electronics Purdue University, 26 th of October 2004 Treatment of Point Defects in Nanowire MOSFETs Using the Nonequilibrium.
Electrical Techniques MSN506 notes. Electrical characterization Electronic properties of materials are closely related to the structure of the material.
Fall 06, Sep 19, 21 ELEC / Lecture 6 1 ELEC / (Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic.
VLSI Design CMOS Transistor Theory. EE 447 VLSI Design 3: CMOS Transistor Theory2 Outline Introduction MOS Capacitor nMOS I-V Characteristics pMOS I-V.
Full Quantum Simulation, Design, and Analysis of Si Tunnel Diodes, MOS Leakage and Capacitance, HEMTs, and RTDs Roger Lake and Cristian Rivas Department.
Analytical 2D Modeling of Sub-100 nm MOSFETs Using Conformal Mapping Techniques Benjamin Iñiguez Universitat Rovira i Virgili (URV), Tarragona, E-43001,
Outline Introduction – “Is there a limit?”
The metal-oxide field-effect transistor (MOSFET)
CSCE 612: VLSI System Design Instructor: Jason D. Bakos.
Single Electron Transistor
Week 9a OUTLINE MOSFET ID vs. VGS characteristic
Chap. 5 Field-effect transistors (FET) Importance for LSI/VLSI –Low fabrication cost –Small size –Low power consumption Applications –Microprocessors –Memories.
Electron Scattering Length - Mean Free Path – le - Avg. distance between scattering Si - ~ 5nm; GaAs - ~ 100 nm Electrical Resistance is closely related.
Lecture 2: CMOS Transistor Theory
Simulation of CMOS inverters based on the novel Surrounding Gate Transistors. A Verilog-A implementation. A. Roldán, J.B. Roldán and F. Gámiz Departamento.
Mobility Chapter 8 Kimmo Ojanperä S , Postgraduate Course in Electron Physics I.
Metal-Oxide- Semiconductor (MOS) Field-Effect Transistors (MOSFETs)
Lecture 19 OUTLINE The MOSFET: Structure and operation
© 2012 Eric Pop, UIUCECE 340: Semiconductor Electronics ECE 340 Lecture 35 MOS Field-Effect Transistor (MOSFET) The MOSFET is an MOS capacitor with Source/Drain.
INAC The NASA Institute for Nanoelectronics and Computing Purdue University Circuit Modeling of Carbon Nanotubes and Their Performance Estimation in VLSI.
1/f noise in devices 전광선.
Ch 10 MOSFETs and MOS Digital Circuits
VFET – A Transistor Structure for Amorphous semiconductors Michael Greenman, Ariel Ben-Sasson, Nir Tessler Sara and Moshe Zisapel Nano-Electronic Center,
Three-dimensional quantum transport simulation of ultra-small FinFETs H. Takeda and N. Mori Osaka University.
Introduction to Monte Carlo Simulation. What is a Monte Carlo simulation? In a Monte Carlo simulation we attempt to follow the `time dependence’ of a.
Henok Abebe Collaborators
Gerousis Toward Nano-Networks and Architectures C. Gerousis and D. Ball Department of Physics, Computer Science and Engineering Christopher Newport University.
Introduction to FinFet
1 Numerical Simulation of Electronic Noise in Si MOSFETs C. Jungemann Institute for Electronics Bundeswehr University Munich, Germany Acknowledgments:
Single spin detection Maksym Sladkov Top master nanoscience symposium June 23, 2005.
A. Rivetti – INFN Sezione di Torino Lecture II Lecture II: Linear circuit theory review Amplifier basics MOS small signal model.
Laboratoire Matériaux et Microélectronique de Provence UMR CNRS Marseille/Toulon (France) - M. Bescond, J-L. Autran, M. Lannoo 4 th.
指導教授:劉致為 博士 學生:魏潔瑩 台灣大學電子工程學研究所
Grace Xing---EE30357 (Semiconductors II: Devices) 1 EE 30357: Semiconductors II: Devices Lecture Note #19 (02/27/09) MOS Field Effect Transistors Grace.
Chap. 41: Conduction of electricity in solids Hyun-Woo Lee.
CSCE 613: Fundamentals of VLSI Chip Design Instructor: Jason D. Bakos.
By Francesco Maddalena 500 nm. 1. Introduction To uphold Moore’s Law in the future a new generation of devices that fully operate in the “quantum realm”
1 Recent studies on a single-walled carbon nanotube transistor Reference : (1) Mixing at 50GHz using a single-walled carbon nanotube transistor, S.Rosenblatt,
Fundamental concepts of integrated-circuit technology M. Rudan University of Bologna.
Development of an analytical mobility model for the simulation of ultra thin SOI MOSFETs. M.Alessandrini, *D.Esseni, C.Fiegna Department of Engineering.
Lecture 18 OUTLINE The MOS Capacitor (cont’d) – Effect of oxide charges – V T adjustment – Poly-Si gate depletion effect Reading: Pierret ; Hu.
Scattering Rates for Confined Carriers Dragica Vasileska Professor Arizona State University.
Lecture 14 OUTLINE pn Junction Diodes (cont’d)
UTB SOI for LER/RDF EECS Min Hee Cho. Outline  Introduction  LER (Line Edge Roughness)  RDF (Random Dopant Fluctuation)  Variation  Solution – UTB.
Sarvajanik College of Engineering & Tech. Project By: Bhogayata Aastha Chamadiya Bushra Dixit Chaula Tandel Aayushi Guided By: Bhaumik Vaidya.
CMOS Analog Design Using All-Region MOSFET Modeling
The MOS capacitor. (a) Physical structure of an n+-Si/SiO2/p-Si MOS capacitor, and (b) cross section (c) The energy band diagram under charge neutrality.
Fatemeh (Samira) Soltani University of Victoria June 11 th
EE130/230A Discussion 10 Peng Zheng.
MOS Capacitor Lecture #5. Transistor Voltage controlled switch or amplifier : control the output by the input to achieve switch or amplifier Two types.
Modeling of Quantum Noise with Electron-Phonon Interactions
Chapter 2 MOS Transistors.
Floating-Gate Devices / Circuits
Solar Inverter.
Implementation of Solar Inverter for
Lecture 19 OUTLINE The MOSFET: Structure and operation
Coulomb Blockade and Single Electron Transistor
Long Channel MOS Transistors
Electronic Noise Noise phenomena Device noise models
More Quantum Mechanics
Presentation transcript:

UPoN Lyon 2008 G. Albareda 1 G.Albareda, D.Jimenez and X.Oriols Universitat Autònoma de Barcelona - Spain E.mail: Can analog and digital applications tolerate the intrinsic noise for aggressively scaled field-effect transistors? Lyon, FRANCE June 2-6, 2008

UPoN Lyon 2008 G. Albareda 2 I.1.- Intrinsic noise in ballistic nanoscaleFETs I.2.- Analytical Signal-to-noise ratio (S/N) II.- Monte Carlo simulation of 3D, 2D and 1D FETs III.- Conclusions I.3.- Analytical Bit-error ratio (BER) I.- Introduction: 3D, 2D and 1D ballistic nanoscale FETs Outline II.1.- Simulator description II.2.- Numerical results

UPoN Lyon 2008 G. Albareda 3 I.1.- Intrinsic noise in ballistic 3D, 2D and 1D FETs The size of the transistors shrinks for faster and smaller microchips Ly Lz Lx 1,2,3,4 gates to improve gate control (Lx>Ly,Lz) When Ly and Lz become comparable to the electron de Broglie wavelength, the wave- nature of the electron is manifested. Ly Lz 3D Bulk FET Ly Lz 2D Quantum Well FET Ly Lz 1D Quantum-Wire FET 1,2,3,4 gates to improve gate control (Lx>Ly,Lz)

UPoN Lyon 2008 G. Albareda 4 I.1.- Intrinsic noise in ballistic 3D, 2D and 1D FETs Study the noise performance of these aggressively scaled FET in analog and digital circuit applications We only consider the “intrinsic” sources of noise due to electron-electron interactions (intrinsic field-effect) We consider ballistic (“ideal”) FETs: No phonon scattering No surface roughness No impurity scattering OUR GOAL.- The Coulomb interaction in the active region I(t).- Exclusion (Pauli) interaction in the contacts

UPoN Lyon 2008 G. Albareda 5 I.2.- Signal to noise ratio (S/N) RLRL Analog FET amplifier G  0 3D  30 x 10 x 8 nm 3

UPoN Lyon 2008 G. Albareda 6 RLRL RLRL I.2.- Signal to noise ratio (S/N) Analog FET amplifier In the saturation region G  0: Using the superposition principle: For NSNS D S I DS (t)  I DS (t) G  I DS (t)

UPoN Lyon 2008 G. Albareda 7 I.2.- Signal to noise ratio (S/N) The role of electron confinement on the average and noise current Ly Lz Lx S D S D S/N 3D > S/N 1D

UPoN Lyon 2008 G. Albareda 8 V CC ‘1’ V CC ‘0’ ON OFF ‘1’ noisy noisless P P N NN N Digital FET inverter: ViVi VoVo V th 0 1 Bit error ratio (BER): I.3.- Bit error ratio (BER) in digital applications I DS (t)  0 NSNS D S I DS (t)  I DS (t) G C

UPoN Lyon 2008 G. Albareda 9 NSNS D S I DS (t)  I DS (t) G C V CC ‘1’ V CC ‘0’ ON OFF ‘1’ noisy noisless P P N NN N I.3.- Bit error ratio (BER) in digital applications Thermal noise: Voltage fluctuations: Noise Power: ViVi VoVo V th 0 1 Bit error ratio (BER): A/2 [ref] L.B.Kish, Physics Letters A 305 (2002)  I DC C 3D > C 1D  BER 3D < BER 1D

UPoN Lyon 2008 G. Albareda 10 II.- Monte Carlo simulation of 3D, 2D and 1D FETs III.- Conclusions I.- Introduction: 3D, 2D and 1D nanoscale FETs Outline II.1.- Simulator description: II.2.- Numerical results: II Average current II Signal to noise ratio II Bit error ratio II Confined particles in 1D FETs II Exact 3D Coulomb interaction II Electron injection model with “Pauli” correlations and charge neutrality

UPoN Lyon 2008 G. Albareda 11 1-D No electron confinement Ly Lz Lx z y Silicon (100) channel orientation Lx=15 nm Ly=5 nm Lz=2 nm Quantum potential for the x system Guess: This guess is quite accurate when there is only one relevant quantized energy II Confined particles in 1D FETs x y E [ref] X.Oriols, Physical Review Letters, 98, (2007)

UPoN Lyon 2008 G. Albareda 12 II Exact 3D Coulomb interaction 3D Coulomb interaction beyond the mean-field approximation [ref] G.Albareda et al, J. Comp. Electr. (2008) DX ERROR Long- range Long-range +Short-range # e - per cell > 1 # e - per cell = 0 or 1 1nm-5nm mean-field (1 Poisson Eq.) exact-field (N Poisson Eqs.) Long-range Mean-field SEPARABLE Exact term NOT SEPARABLE Long-range + Short-range

UPoN Lyon 2008 G. Albareda 13 t I(t) e e e Temperature ; T>0 0 Binomial injection process Pauli correlation [ref] X.Oriols et al. Solid State Electronics, 51, 306 (2007) [ref] T.Gonzalez, Semicond. Sci. Technol. 14, L37 (1999) II Electron Injection model with “Pauli” correlation and charge neutrality Time-dependent version of Landauer-Buttiker boundary conditions

UPoN Lyon 2008 G. Albareda 14 Our injection model, coupled to the boundary conditions of the Poisson equation, does also assures charge neutrality at the contacts For a good conductor Local Gauss equation Continuity equation Practical Monte Carlo implementation II Electron Injection model with “Pauli” correlation and charge neutrality  t [ref] H.Lopez, G.Albareda et al., J. Comp. Electr. (2008) =/=/ Charge neutrality At each time step:

UPoN Lyon 2008 G. Albareda 15 II Average current Average current No scaling rule: SiO 2 oxide thickness: t ox =2 nm Contact doping: 2·10 19 cm -3 Vdrain Vgate 3D  30 x 10 x 8 nm 3 1D  15 x 5 x 2 nm 3 =0.5V =0.35V ‘0’  0V ‘1’  0.5V

UPoN Lyon 2008 G. Albareda 16 II Signal-to-noise ratio Amplifying configuration (saturation region) S/N comparison Vdrain=0.5 V Vgate 3D Average current > 1D Average current 3D Fano Factor < 1D Fano Factor

UPoN Lyon 2008 G. Albareda 17 Vgate=0.5 V E fd E Cd E fs E Cs II Bit-error-degradation BER error probability ns simulations (time step=2· )

UPoN Lyon 2008 G. Albareda 18 II Bit-error-degradation BER error probability Vgate=0.5 V 1D 3D 50GHz 500GHz 1THz 500GHz 50GHz 5THz C=5· F C=1· F Our 3D FETs can hold frequencies up to 500GHz Our 1D FETs can’t hold frequencies of 500GHz According to our analitycal estimation, smaller FETs (capacitors) are noisier.

UPoN Lyon 2008 G. Albareda 19 III.- Conclusions Merci beaucoup We have developed an accurate Monte Carlo simulator for 3D, 2D and 1D nanoscale FET. For analog applications, smaller devices produce a minor average current and a larger Fano factor, leading to a signal-to-noise (S/N) degradation. For digital applications, smaller devices are more sensible to electrostatics (i.e. smaller capacitance), and provide a degradation of the Bit Error Ratio (BER). In summary, Smaller FETs are noiser for either analog or digital applications.