Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu How to Use This Presentation To View the presentation as a slideshow.

Slides:



Advertisements
Similar presentations
Chapter 11 Preview Multiple Choice Short Answer Extended Response
Advertisements

Unit 4 Sections A14a-c In which you will learn about: Combined gas law Dalton’s law Graham’s Law.
Molecular Compostion of Gases
The Gaseous State 5.1 Gas Pressure and Measurement 5.2 Empirical Gas Laws 5.3 The Ideal Gas Law 5.4 Stoichiometry and Gas Volumes.
The Gaseous State Chapter 5.
Honors Chem Chapters 10, 11, and 12. Kinetic Molecular Theory (KMT) Molecules are constantly in motion and collide with one another and the wall of a.
Molecular Composition of Gases
NOTES: 14.4 – Dalton’s Law & Graham’s Law
Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu How to Use This Presentation To View the presentation as a slideshow.
Gases.  Define pressure, give units of pressure, and describe how pressure is measured.  State the standard conditions of temperature and pressure and.
Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu Table of Contents Chapter 11 Gases Section 1 Gases and Pressure Section.
 The average kinetic energy (energy of motion ) is directly proportional to absolute temperature (Kelvin temperature) of a gas  Example  Average energy.
GAS LAWS. Behavior of Gases Gases can expand to fill their container Gases can be compressed –Because of the space between gas particles Compressibility:
Chapter 11 Gases.
Gases- Part 2 Gas Stoichiometry Dalton’s Partial Pressure Kinetic Molecular Theory Effusion and Diffusion Real Gases.
Molecular Composition of Gases
Main AR Standards Chapter menu Resources
Chapter 11 – Molecular Composition of Gases Volume-Mass Relationships of Gases  Joseph Gay-Lussac, French chemist in the 1800s, found that at constant.
Ideal Gas Law.
Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu What do you know? Quiz 1.What will happen to the volume of a container.
1 Material was developed by combining Janusa’s material with the lecture outline provided with Ebbing, D. D.; Gammon, S. D. General Chemistry, 8th ed.,
Gases Chapter 13 Some basics Gases have properties that are very different from solids and liquids. Gases have properties that are very different from.
Preview Lesson Starter Objectives Measuring and Comparing the Volumes of Reacting GasesMeasuring and Comparing the Volumes of Reacting Gases Avogadro’s.
Warm-up 1. What formula will you use if you are given volume and pressure? 2. A sample of gas at 47°C and 1.03 atm occupies a volume of 2.20 L. What volume.
Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu Main AR Standards.
The Chapter 14 Behavior of Gases.
Gases Diffusion and Effusion.  Objectives  Describe the process of diffusion  State Graham’s law of effusion  State the relationship between the average.
Gases.  State the kinetic-molecular theory of matter, and describe how it explains certain properties of matter.  List the five assumptions of the kinetic-
Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu Main AR Standards.
Chapter 10; Gases. Elements that exist as gases at 25 0 C and 1 atmosphere.
Chapter 9: Gases: Their Properties and Behavior
Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu How to Use This Presentation To View the presentation as a slideshow.
Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu Table of Contents Chapter 11 Gases Section 1 Gases and Pressure Section.
Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu How to Use This Presentation To View the presentation as a slideshow.
Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu How to Use This Presentation To View the presentation as a slideshow.
Chapter 14: The Behavior of Gases
Chapter Gases: Mixtures and Movements. The surface of a latex balloon has tiny pores through which gas particles can pass. The rate at which.
Preview Lesson Starter Objectives The Kinetic-Molecular Theory of Gases The Kinetic-Molecular Theory and the Nature of GasesThe Kinetic-Molecular Theory.
Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu How to Use This Presentation To View the presentation as a slideshow.
Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu AR STANDARDS for ch (see ch.11 for more)
Chapter 11 Gas Laws.
Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu Main AR Standards.
Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu How to Use This Presentation To View the presentation as a slideshow.
Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu How to Use This Presentation To View the presentation as a slideshow.
Remember according to Avogadro’s law, one mole of any gas will occupy the same volume as one mole of any other gas at the same temperature regardless.
Molecular Composition of Gases
Preview Lesson Starter Objectives Measuring and Comparing the Volumes of Reacting GasesMeasuring and Comparing the Volumes of Reacting Gases Avogadro’s.
Grahm’s Law of Effusion Effusion Equation Application.
Chapter 11: Molecular Composition of Gases. Sect. 11-1: Volume-Mass Relationships of Gases Gay-Lussac’s Law of combining volumes of gases – at constant.
Unit 9 Review Gases. The Game Board
Drill – 3/22/11 A gas has a volume of 1.75 L at -23ºC and 150.0kPa. At what temperature would the gas occupy 1.30 L at 210.0kPa?
Honors Chemistry, Chapter 11 Page 1 Chapter 11 – Molecular Composition of Gases.
Gases expand, diffuse, exert pressure, and can be compressed because they are in a low-density state consisting of tiny, constantly moving particles. Section.
Chapter 13 Calculating Gases 1 Section 12.1 Pressure + Temperature conversions, Dalton’s + Graham’s Laws Section 13.1 The Gas Laws Section 13.2 The Ideal.
Chapter 11 Gases. VARIABLES WE WILL SEE! Pressure (P): force that a gas exerts on a given area Volume (V): space occupied by gas Temperature (T): MUST.
Chapter 12 “The Behavior of Gases” Pre-AP Chemistry Charles Page High School Stephen L. Cotton.
Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu How to Use This Presentation To View the presentation as a slideshow.
Section 11–4: Effusion and Diffusion
Chapter 11 Preview Objectives Diffusion and Effusion
How to Use This Presentation
Volume-Mass Relationships of Gases
Diffusion and Effusion
Gases continued.
Chapter10 Gases.
Gases.
How to Use This Presentation
Chapter 11 Preview Lesson Starter Objectives
Gas Laws.
Chapter 11 Diffusion and Effusion Section 4.
Presentation transcript:

Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu How to Use This Presentation To View the presentation as a slideshow with effects select “View” on the menu bar and click on “Slide Show.” To advance through the presentation, click the right-arrow key or the space bar. From the resources slide, click on any resource to see a presentation for that resource. From the Chapter menu screen click on any lesson to go directly to that lesson’s presentation. You may exit the slide show at any time by pressing the Esc key.

Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu Chapter Presentation Transparencies Lesson Starters Standardized Test PrepVisual Concepts Sample Problems Resources

Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu Objectives Describe the process of diffusion. State Graham’s law of effusion. State the relationship between the average molecular velocities of two gases and their molar masses. Chapter 11 Section 4 Diffusion and Effusion

Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu Diffusion and Effusion The constant motion of gas molecules causes them to spread out to fill any container they are in. The gradual mixing of two or more gases due to their spontaneous, random motion is known as diffusion. Effusion is the process whereby the molecules of a gas confined in a container randomly pass through a tiny opening in the container. Chapter 11 Section 4 Diffusion and Effusion

Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu Visual Concepts Click below to watch the Visual Concept. Visual Concept Comparing Diffusion and Effusion Chapter 11

Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu Graham’s Law of Effusion Rates of effusion and diffusion depend on the relative velocities of gas molecules. The velocity of a gas varies inversely with the square root of its molar mass. Recall that the average kinetic energy of the molecules in any gas depends only the temperature and equals. Chapter 11 Section 4 Diffusion and Effusion For two different gases, A and B, at the same temperature, the following relationship is true.

Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu Graham’s Law of Effusion From the equation relating the kinetic energy of two different gases at the same conditions, one can derive an equation relating the rates of effuses of two gases with their molecular mass: Chapter 11 Section 4 Diffusion and Effusion This equation is known as Graham’s law of effusion, which states that the rates of effusion of gases at the same temperature and pressure are inversely proportional to the square roots of their molar masses.

Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu Visual Concepts Click below to watch the Visual Concept. Visual Concept Graham’s Law of Effusion Chapter 11

Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu Visual Concepts Click below to watch the Visual Concept. Visual Concept Equation for Graham’s Law of Effusion Chapter 11

Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu Graham’s Law Section 4 Diffusion and Effusion Chapter 11

Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu Graham’s Law of Effusion, continued Sample Problem J Compare the rates of effusion of hydrogen and oxygen at the same temperature and pressure. Chapter 11 Section 4 Diffusion and Effusion

Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu Sample Problem J Solution Given: identities of two gases, H 2 and O 2 Unknown: relative rates of effusion Solution: The ratio of the rates of effusion of two gases at the same temperature and pressure can be found from Graham’s law. Chapter 11 Graham’s Law of Effusion, continued Section 4 Diffusion and Effusion

Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu Sample Problem J Solution, continued Substitute the given values into the equation: Hydrogen effuses 3.98 times faster than oxygen. Chapter 11 Graham’s Law of Effusion, continued Section 4 Diffusion and Effusion

Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu End of Chapter 11 Show

Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu 1. Pressure can be measured in A.grams. B.meters. C.pascals. D.liters. Standardized Test Preparation Chapter 11 Multiple Choice

Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu 1. Pressure can be measured in A.grams. B.meters. C.pascals. D.liters. Chapter 11 Standardized Test Preparation Multiple Choice

Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu 2. A sample of oxygen gas has a volume of 150 mL when its pressure is atm. If the pressure is increased to atm and the temperature remains constant, what will the new volume be? A.140 mL B.160 mL C.200 mL D.240 mL Chapter 11 Standardized Test Preparation Multiple Choice

Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu 2. A sample of oxygen gas has a volume of 150 mL when its pressure is atm. If the pressure is increased to atm and the temperature remains constant, what will the new volume be? A.140 mL B.160 mL C.200 mL D.240 mL Chapter 11 Standardized Test Preparation Multiple Choice

Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu 3. What is the pressure exerted by a mol sample of nitrogen in a 10.0 L container at 20°C? A.1.2 kPa B.10 kPa C.0.10 kPa D.120 kPa Chapter 11 Standardized Test Preparation Multiple Choice

Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu 3. What is the pressure exerted by a mol sample of nitrogen in a 10.0 L container at 20°C? A.1.2 kPa B.10 kPa C.0.10 kPa D.120 kPa Chapter 11 Standardized Test Preparation Multiple Choice

Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu 4. A sample of gas in a closed container at a temperature of 100.0°C and 3.0 atm is heated to 300.0°C. What is the pressure of the gas at the higher temperature? A.35 atm B.4.6 atm C.59 atm D.9.0 atm Chapter 11 Standardized Test Preparation Multiple Choice

Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu 4. A sample of gas in a closed container at a temperature of 100.0°C and 3.0 atm is heated to 300.0°C. What is the pressure of the gas at the higher temperature? A.35 atm B.4.6 atm C.59 atm D.9.0 atm Chapter 11 Standardized Test Preparation Multiple Choice

Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu 5. An unknown gas effuses twice as fast as CH 4. What is the molar mass of the gas? A.64 g/mol B.32 g/mol C.8 g/mol D.4 g/mol Chapter 11 Standardized Test Preparation Multiple Choice

Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu 5. An unknown gas effuses twice as fast as CH 4. What is the molar mass of the gas? A.64 g/mol B.32 g/mol C.8 g/mol D.4 g/mol Chapter 11 Standardized Test Preparation Multiple Choice

Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu 6. If 3 L N 2 and 3 L H 2 are mixed and react according to the equation below, how many liters of unreacted gas remain? Assume temperature and pressure remain constant. N 2 (g) + 3H 2 (g)  2NH 3 (g) A.4 L B.3 L C.2 L D.1 L Chapter 11 Standardized Test Preparation Multiple Choice

Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu 6. If 3 L N 2 and 3 L H 2 are mixed and react according to the equation below, how many liters of unreacted gas remain? Assume temperature and pressure remain constant. N 2 (g) + 3H 2 (g)  2NH 3 (g) A. 4 L B.3 L C.2 L D.1 L Chapter 11 Standardized Test Preparation Multiple Choice

Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu 7. Avogadro’s law states that A.equal numbers of moles of gases at the same conditions occupy equal volumes, regardless of the identity of the gases. B.at constant pressure, gas volume is directly proportional to absolute temperature. C.the volume of a gas is inversely proportional to its amount in moles. D.at constant temperature, gas volume is inversely proportional to pressure. Chapter 11 Standardized Test Preparation Multiple Choice

Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu 7. Avogadro’s law states that A.equal numbers of moles of gases at the same conditions occupy equal volumes, regardless of the identity of the gases. B.at constant pressure, gas volume is directly proportional to absolute temperature. C.the volume of a gas is inversely proportional to its amount in moles. D.at constant temperature, gas volume is inversely proportional to pressure. Chapter 11 Standardized Test Preparation Multiple Choice

Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu 8. Give a molecular explanation for the observation that the pressure of a gas increases when the gas volume is decreased. Chapter 11 Standardized Test Preparation Short Answer

Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu 8. Give a molecular explanation for the observation that the pressure of a gas increases when the gas volume is decreased. Answer: The molecules are closer together, so they strike the walls of the container more often. Chapter 11 Standardized Test Preparation Short Answer

Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu 9. The graph on the next slide shows a plot of volume versus pressure for a particular gas sample at constant pressure. Answer the following questions by referring to the graph. No calculation is necessary. a.What is the volume of this gas sample at standard pressure? b.What is the volume of this gas sample at 4.0 atm pressure? c.At what pressure would this gas sample occupy a volume of 5.0 L? Chapter 11 Standardized Test Preparation Short Answer

Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu 9. continued Chapter 11 Standardized Test Preparation Short Answer

Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu 9. continued Chapter 11 Standardized Test Preparation Short Answer Answer: a. 2.0 L b. 0.5 L c. 0.4 atm

Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu 10.Refer to the plot in question 9. Suppose the same gas sample were heated to a higher temperature and a new graph of V versus P were plotted. Would the new plot be identical to this one? If not, how would it differ? Chapter 11 Standardized Test Preparation Extended Response

Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu 10.Refer to the plot in question 9. Suppose the same gas sample were heated to a higher temperature and a new graph of V versus P were plotted. Would the new plot be identical to this one? If not, how would it differ? Answer: The plot would not be identical to this one. It would have a similar shape, but would appear higher on the graph. This is because at any pressure, the volume would be higher at the higher temperature. Chapter 11 Standardized Test Preparation Extended Response