CME trajectory deduced from cosmic ray measurements K. Munakata, T. Kuwabara and J. W. Bieber.

Slides:



Advertisements
Similar presentations
Assume the axial symmetric CR density distribution with the minimum along with the axis of a cylinder Then the observed –G points toward the density minimum.
Advertisements

Cosmic Ray Using for Monitoring and Forecasting Dangerous Solar Flare Events Lev I. Dorman (1, 2) 1. Israel Cosmic Ray & Space Weather Center and Emilio.
Forbush Decrease Prediction Based on Remote Solar Observations M. Dumbović, B. Vršnak Hvar Observatory, Faculty of Geodesy, University of Zagreb, Croatia.
Interaction of coronal mass ejections with large-scale structures N. Gopalswamy, S. Yashiro, H. Xie, S. Akiyama, and P. Mäkelä IHY – ISWI Regional meeting.
Cosmic Rays and Space Weather Erwin O. Flückiger Laurent Desorgher, Rolf Bütikofer, Benoît Pirard Physikalisches Institut University of Bern
M. J. Reiner, 1 st STEREO Workshop, March, 2002, Paris.
Bastille Day 2000 Solar Energetic Particles Event: Ulysses observations at high heliographic latitudes M. Zhang Florida Institute of Technology.
IMPRS June Energetic particles in the solar system The heliosphere is flooded with those particles, from at least 6 different sources!
Towards a European Infrastructure for Lunar Observatories Bremen, Wednesday 23 rd March 2005 A 3D cosmic ray detector on the Moon X. Moussas University.
Constraints on Particle Acceleration from Interplanetary Observations R. P. Lin together with L. Wang, S. Krucker at UC Berkeley, G Mason at U. Maryland,
RT Modelling of CMEs Using WSA- ENLIL Cone Model
Why a Sun-Earth line Coronagraph is Best Doug Biesecker NOAA/SWPC.
SHINE 2008 June, 2008 Utah, USA Visit our Websites:
Efficacy of Muon Detection for Solar Flare Early Warning Canadian Muon Workshop St-Émile-de-Suffolk, Québec, Canada October 17-19, 2011 NRCan DND Carleton.
ОПАСНОСТИ МАГНИТНЫХ БУРЬ И ВОЗМОЖНОСТИ ИСПОЛЬЗОВАНИЯ МИРОВОЙ СЕТИ НЕЙТРОННЫХ МОНИТОРОВ И МЮОННЫХ ТЕЛЕСКОПОВ ДЛЯ ПРЕДСКАЗАНИЯ ПОДХОДА К ЗЕМЛЕ МОЩНЫХ МЕЖПЛАНЕТНЫХ.
CR variation during the extreme events in November 2004 Belov (a), E. Eroshenko(a), G. Mariatos ©, H. Mavromichalaki ©, V.Yanke (a) (a) IZMIRAN), ,
CME-GEOMETRY AND COSMIC-RAY ANISOTROPY OBSERVED BY A PROTOTYPE MUON DETECTOR NETWORK K. Munakata 1, T. Kuwabara 1, J. W. Bieber 2, P. Evenson 2, R. Pyle.
North-south anisotropy of galactic cosmic rays observed with the Global Muon Detector Network 34 th ICRC (August 4, 2015, Den Hague) SH07 ID117 K. Munakata.
A Catalog of Halo Coronal Mass Ejections from SOHO N. Gopalswamy 1, S. Yashiro 2, G. Michalek 3, H. Xie 3, G. Stenborg 2, A. Vourlidas 4, R. A. Howard.
Ground Level Enhancement of May 17, 2012 Observed at South Pole SH21A-2183 Takao Kuwabara 1,3 ; John Bieber 1 ; John Clem 1,3 ; Paul Evenson 1,3 ; Tom.
Cosmic Rays in the Heliosphere J. R. Jokipii University of Arizona I acknowledge helpful discussions with J. Kόta and J. GIacalone. Presented at the TeV.
ESWW10, Antwerpen, 2013 Cosmic ray variations caused by magnetic clouds in the interplanetary disturbances A. ABUNIN,M., ABUNINA, A. BELOV, E. EROSHENKO,
Ultimate Spectrum of Solar/Stellar Cosmic Rays Alexei Struminsky Space Research Institute, Moscow, Russia.
Olga Khabarova Heliophysical Laboratory, Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation RAS (IZMIRAN), Moscow, Russia
A.V. Belov 1, E. A. Eroshenko 1, H. Mavromichalaki 2, V.A. Oleneva 1, A. Papaioannou 2, G. Mariatos 2, V. G. Yanke 1 (1) Institute of Terrestrial Magnetism,
Monte Carlo simulations of a first prototype micropattern gas detector system used for muon tomography J. B. Locke, K. Gnanvo, M. Hohlmann Department of.
02-06 Dec 2013CHPC-Cape town1 A study of the global heliospheric modulation of galactic Carbon M. D. Ngobeni, M. S. Potgieter Centre for Space Research,
Ground level enhancement of the solar cosmic rays on January 20, A.V. Belov (a), E.A. Eroshenko (a), H. Mavromichalaki (b), C. Plainaki(b), V.G.
IMF Prediction with Cosmic Rays THE BASIC IDEA: Find signatures in the cosmic ray flux that are predictive of the future behavior of the interplanetary.
By Dr. A. Mahrous Helwan University - EGYPT By Dr. A. Mahrous Helwan University - EGYPT.
1 Acceleration and Deceleration of Flare/Coronal Mass Ejection Induced Shocks S.T. Wu 1, C.-C. Wu 2, Aihua Wang 1, and K. Liou 3 1 CSPAR, University of.
Extremely Fast Coronal Mass Ejection on 23 July Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland,20723, USA 2 NOAA Space Weather.
NMDB - the European neutron monitor database Karl-Ludwig Klein, for the NMDB consortium.
IMF Prediction with Cosmic Rays THE BASIC IDEA: Find signatures in the cosmic ray flux that are predictive of the future behavior of the interplanetary.
ROCKENBACH, M. 1; DAL LAGO, A. 2; MUNAKATA, K. 3; KATO, C
MuSTAnG – Muon Spaceweather Telescope for Anisotropies at Greifswald * Poster Content Space Weather Physics behind Cosmic Ray Muon Anisotropy MuSTAnG Consortium.
Earth’s Magnetosphere NASA Goddard Space Flight Center
Forecast of Geomagnetic Storm based on CME and IP condition R.-S. Kim 1, K.-S. Cho 2, Y.-J. Moon 3, Yu Yi 1, K.-H. Kim 3 1 Chungnam National University.
IMF derivation from Pickup Ions observed by ASPERA UT UT UT M. Yamauchi B ion ion motion in.
Space Weather in Earth’s magnetosphere MODELS  DATA  TOOLS  SYSTEMS  SERVICES  INNOVATIVE SOLUTIONS Space Weather Researc h Center Masha Kuznetsova.
O N THE INFLUENCE OF THE CORONAL HOLE LATITUDE AND POLARITY ON THE GEOMAGNETIC ACTIVITY AND COSMIC RAY VARIATIONS Abunina Maria, IZMIRAN, Russia Abunin.
Fall 2004 AGU Meeting, San Francisco SH31B-07 GROUND-BASED COSMIC RAY DETECTORS FOR SOLAR-TERRESTRIAL RESEARCH AND SPACE WEATHER FORECASTING John W. Bieber.
Modeling of CME-driven Shock propagation with ENLIL simulations using flux-rope and cone-model inputs Using observations from STEREO/SECCHI and SOHO/LASCO,
What we can learn from the intensity-time profiles of large gradual solar energetic particle events (LGSEPEs) ? Guiming Le(1, 2,3), Yuhua Tang(3), Liang.
Yu.G. Shafer Institute of Cosmophysical Research and Aeronomy of SB RAS Transparency of a magnetic cloud boundary for cosmic rays I.S. Petukhov, S.I. Petukhov.
CASS/UCSD ILWS 2009 SMEI 3D reconstructions of density behind shocks B.V. Jackson, P.P. Hick, A. Buffington, M.M. Bisi, J.M. Clover, S. Hamilton Center.
It is considered that until now in the 24th cycle of solar activity 2 ground level enhancements of solar cosmic rays (GLEs) are registered: on May 17,
High-energy Electron Spectrum From PPB-BETS Experiment In Antarctica Kenji Yoshida 1, Shoji Torii 2 on behalf of the PPB-BETS collaboration 1 Shibaura.
The ICME’s magnetic field and the role on the galactic cosmic ray modulation for the solar cycle 23 Evangelos Paouris and Helen Mavromichalaki National.
Modeling 3-D Solar Wind Structure Lecture 13. Why is a Heliospheric Model Needed? Space weather forecasts require us to know the solar wind that is interacting.
GLOBAL SURVEY METHOD: WHAT DO NEUTRON MONITORS SEE? Belov A.1, Eroshenko E.1, Abunin A. 1, Abunina M. 1, Yanke V. 1, Oleneva V.1, Mavromichalaki H.2, Papaioannou.
ENLIL Modeling for the interaction event: Effect of Interacting CMEs on SEP Intensity NASA/GSFC H. Xie, N. Gopalswamy, P. Makela, S. Yashiro.
Extreme Event Symposium 2004 MAGNETOSPHERIC EFFECT in COSMIC RAYS DURING UNIQUE MAGNETIC STORM IN NOVEMBER Institute of Terrestrial Magnetism,
GLOBAL SURVEY METHOD: WHAT DO NEUTRON MONITORS SEE? Belov A.1, Eroshenko E.1, Abunin A. 1, Abunina M. 1, Yanke V. 1, Oleneva V.1, Mavromichalaki H.2, Papaioannou.
A.V. Belov 1, E. A. Eroshenko 1, H. Mavromichalaki 2, V.A. Oleneva 1, A. Papaioannou 2, G. Mariatos 2, V. G. Yanke 1 (1) Institute of Terrestrial Magnetism,
1 Introduction to the SHINE Campaign Events 2002 April 21 and 2002 August 24 Allan J. Tylka Code 7652, Naval Research Laboratory, Washington DC 20375
Multi-Point Observations of The Solar Corona for Space weather Acknowledgements The forecasting data was retrieved from NOAA SWPC products and SIDC PRESTO.
The CME geomagnetic forecast tool (CGFT) M. Dumbović 1, A. Devos 2, L. Rodriguez 2, B. Vršnak 1, E. Kraaikamp 2, B. Bourgoignie 2, J. Čalogović 1 1 Hvar.
IMF Prediction with Cosmic Rays THE BASIC IDEA: Find signatures in the cosmic ray flux that are predictive of the future behavior of the interplanetary.
1 Test Particle Simulations of Solar Energetic Particle Propagation for Space Weather Mike Marsh, S. Dalla, J. Kelly & T. Laitinen University of Central.
Earth’s Magnetosphere Space Weather Training Kennedy Space Center Space Weather Research Center.
1 Pruning of Ensemble CME modeling using Interplanetary Scintillation and Heliospheric Imager Observations A. Taktakishvili, M. L. Mays, L. Rastaetter,
Driving 3D-MHD codes Using the UCSD Tomography
GROUND-LEVEL EVENT (GLE)
ICME in the Solar Wind from STEL IPS Observations
Investigations of CME in muon flux detected in hodoscopic mode
M. D Ngobeni*,1, M. S. Potgieter1
Quantification of solar wind parameters from measurments by SOHO and DSCOVR spacecrafts during series of Interplanetary Coronal Mass Ejections in the.
. Multipoint, galactic cosmic ray observations associated with a series of interplanetary coronal mass ejections: the case study of June 2015 A. Papaioannou1,
NMDB - the European neutron monitor database
Presentation transcript:

CME trajectory deduced from cosmic ray measurements K. Munakata, T. Kuwabara and J. W. Bieber

Cosmic ray storms isotropic intensity decreases Forbush Decrease anisotropy enhancements B×Gradient anisotropy ⇒ deduction of CME trajectory CME, Shock Geomagnetic & Cosmic-ray storms

B ×Gradient anisotropy ー G ⊥ pointing toward CME center : IMF unit vector : density gradient vector : Larmour radius ~0.2 AU for muons

CMEs analyzed Data used 35 directions (Nagoya, Hobart, SaoMartinho) 1ry Energy 50~120 GeV Prototype Muon Detector Network Onset time of SSC Max. K p FD sizeCorresponding CME Associated X-ray flare Onset timeSizeLocation 4/11 13: %4/10 05:30X  S, 9  W 8/27 19: %8/25 16:50X  S, 34  E

Observation 4/118/27 Gx Gy Gz

Method 1 Get r from observed G(r) every hour Method 2 Get trajectory by best-fitting the expected G(r) to the observed Analysis Assume Gaussian CR density distribution, as… : depth: width Then gradient will be… Derive r using observed G(r)

G obs |G obs | ⇒ r G obs orientation ⇒ direction of CME center Location of CME center (x,y,z in unit of ) Method 1

4/11 CME by Method1 Moving direction GSE lat.=48°, long.=193° Velocity (using average SW speed 650km/s for Vx…) |V|=1000km/s Width of CME λ=0.10AU Impact parameter at earth D=0.017AU

Method 2 Then the gradient at t will be… Set the location of CME center at time t, as… Find parameters which give…

Moving direction θ=60°,φ=183° Velocity (Vx=650km/s) V=1300km/s Width of CME λ=0.14AU Impact parameter D=0.035AU 4/11 CME by Method 2

Moving direction θ=-12°,φ=212° Velocity (using Vx=500km/s) V=610km/s Width of CME λ=0.087AU Impact parameter D=0.12AU 8/27 CME by Metod 1

Moving direction θ= ー 10°,φ=224° Velocity (Vx=500km/s ) V=700km/s Width of CME λ=0.14AU Impact parameter D=0.22AU 8/27 CME by Method 2

Summary 4/11 CME CME center hit the earth moving northward 8/27 CME CME center passed the south of earth moving from east to west of the sun CME Method1/2 Moving DirectionSpeed [km/s] Width [AU] D [AU] 4/111θ= 48°φ= 193° θ= 60°φ= 183° /271θ= -12°φ= 212° θ= -10°φ= 224°