New Developments of Flavor Physics 2009 1 Kyoto University H. Nanjo for E391a and K O TO collaboration.

Slides:



Advertisements
Similar presentations
NDVCS measurement with BoNuS RTPC M. Osipenko December 2, 2009, CLAS12 Central Detector Collaboration meeting.
Advertisements

NA48/3 - The Strange Penguin Experiment by James Barnard.
June 9, Tetsuro Sekiguchi, KEK BNL-E949 Collaboration The E949 experiment The analysis The results Conclusions BNL, FNAL, UNM, Stony Brook Univ.
8/16/2004ICHEP2004, Beijing Rare Kaon Decay Results From E949 At BNL: K +     Shaomin CHEN TRIUMF, Canada.
Salvatore Fiore University of Rome La Sapienza & INFN Roma1 for the KLOE collaboration LNF Spring School “Bruno Touscheck”, Frascati, May 2006 CP/CPT.
03 Aug NP041 KOPIO Experiment Measurement of K L    Hideki Morii (Kyoto Univ.) for the KOPIO collaborations Contents Physics Motivation.
The CP-violation experiments NA48 at CERN Manfred Jeitler Institute of High Energy Physics of the Austrian Academy of Sciences RECFA meeting Innsbruck,
July 2001 Snowmass A New Measurement of  from KTeV Introduction The KTeV Detector  Analysis of 1997 Data Update of Previous Result Conclusions.
J. Whitmore BEACH 2004 June 30, 2004 KTeV Results: K L    ( =e, , ) BEACH 2004 June 30, 2004 Julie Whitmore, Fermilab l Physics Motivation - Direct.
Search for LFV  decays involving     ’ at Belle Y. Enari, Belle collaboration Nagoya University.
June 2000Status of BELLE1 Beyond e + e - Workshop The Homestead Glen Arbor, MI Daniel Marlow BELLE Princeton University June 17, 2000.
July 2000Results from BELLE1 IV th Rencontres du Vietnam Hanoi, Vietnam Daniel Marlow BELLE Princeton University July 22, 2000.
1 K L →π 0 νν 探索実験 KEK-PS E391a における Run3 データ解析の現状 JPS 2008 Spring Meeting Hideki MORII (Kyoto Univ.)
HYP03 Future Hypernuclear Program at Jlab Hall C Satoshi N. Nakamura Tohoku University 18 th Oct 2003, JLab.
New measurement of the  + →  + branching ratio _ Zhe Wang (E949 collaboration) Brookhaven National Laboratory 2008 at Cornell, U. Wisconsin and Fermi.
POLENKEVICH IRINA (JINR, DUBNA) ON BEHALF OF THE NA62 COLLABORATION XXI INTERNATIONAL WORKSHOP ON HIGH ENERGY PHYSICS AND QUANTUM FIELD THEORY (QFTHEP'2013)
25/07/2002G.Unal, ICHEP02 Amsterdam1 Final measurement of  ’/  by NA48 Direct CP violation in neutral kaon decays History of the  ’/  measurement by.
Setup for hypernuclear gamma-ray spectroscopy at J-PARC K.Shirotori Tohoku Univ. Japan for the Hyperball-J collaboration J-PARC E13 hypernuclear  -ray.
Status of E391a Search for K L    decay G.Y.Lim IPNS, 32nd ICHEP 19 th August 2004 Beijing.
The Scintillator ECAL Beam Test at FNAL K. Kotera, Shinshu-u, 1st October 2009 CALICE Scintillator ECAL group; Kobe University, Kyungpook University, the.
Kinematics of  + n   p   0  p reaction Susumu Oda 2007/04/10-19.
Search for K L →π 0 νν Takao Shinkawa National Defense Academy Particle Physics August 7, 2008.
Dec. 13, 2001Yoshihisa OBAYASHI, Neutrino and Anti-Neutrino Cross Sections and CP Phase Measurement Yoshihisa OBAYASHI (KEK-IPNS) NuInt01,
Дмитрий ВавиловИФВЭ 2005, 19 Декабря1 New results on rare kaon and pion decays from BNL E949 Dmitry Vavilov E949 is an high rate K + decay at rest experiment.
July 19th, 2003EPS HEP Aachen R. Fantechi Tests of Chiral Perturbation Theory in K S rare decays at NA48 Riccardo Fantechi INFN - Sezione di Pisa.
Ю.Г. Куденко 1 Редкие распады каонов Дубна, 12 мая 2004 Вторые Марковские чтения Дубна-Москва, мая 2004 г. Институт ядерных исследований РАН CKM.
The new K L     experiment (KOTO) at J-PARC Hiroaki Watanabe for the J-PARC E14 KOTO collaboration KEK, IPNS.
A search for deeply-bound kaonic nuclear states in (in-flight K -, N) reaction Hiroaki Ohnishi RIKEN.
STUDY OF ULTRAREAR DECAYS K 0 → π 0 νν(bar) (Search of K 0 → π 0 νν(bar) decay at IHEP, project KLOD ) V.N. Bolotov on behalf of the collaboration JINR,
Prospects for Future Kaon Physics at Fermilab Presentation to the Fermilab Physics Advisory Committee R. Tschirhart March 28 th, 2008.
Status of E391a G.Y.Lim IPNS, KEK. K L    decay Experimental difficulties  Tiny branching fraction Great number of K L decays  Weak Kinematical constaints.
Status Report for KEK-PS E391a KEK IPNS G.Y.Lim 14 April 2003.
22 September 2005 Haw05 1  (1405) photoproduction at SPring-8/LEPS H. Fujimura, Kyoto University Kyoto University, Japan K. Imai, M. Niiyama Research.
The NA62 rare kaon decay experiment Photon Veto System Vito Palladino for NA62 Coll.
Measurement of Vus. Recent NA48 results on semileptonic and rare Kaon decays Leandar Litov, CERN On behalf of the NA48 Collaboration.
October 3, ICFP 2005 Takao INAGAKI ( KEK) for the E391a collaboration Status of E391a experiment for the rare decay.
Nov Beam Catcher in KOPIO (H. Mikata Kaon mini worksyop1 Beam Catcher in the KOPIO experiment Hideki Morii (Kyoto Univ.) for the KOPIO.
Measurement of K L    decay G.Y.Lim IPNS,KEK. Why K L →    ? Flavor Changing Neutral Current Br(K L   o  ) = 6  1 ・ Im(V td V ts ) 2 X 2 (x.
Overview of the KOPIO Detector 2005 RHIC & AGS Users ’ Meeting Brookhaven National Laboratory June 20, 2005 David E. Jaffe.
Experimental Search for the Decay K. Mizouchi (Kyoto University) (1) Physics Motivation (2) Detector (3) Selection Criteria (4) Branching Ratio (5) Background.
NuFact02, July 2002, London Takaaki Kajita, ICRR, U.Tokyo For the K2K collab. and JHF-Kamioka WG.
Rare decay Opportunities at U-70 Accelerator (IHEP, Protvino) Experiment KLOD Joint Project : IHEP,Protvino JINR,Dubna INR, Moscow, RAS.
Douglas Bryman University of British Columbia APS May 3, 2011.
6-8 March, 2006T. Workshop on "Mass Origin and Supersymmetry Physics"1 Development of an Aerogel-based Photon Detector T. Nomura (Kyoto Univ.)
J-PARC でのハイパー核ガンマ線分光実験用 散乱粒子磁気スペクトロメータ検出器の準備 状況 東北大理, 岐阜大教 A, KEK B 白鳥昂太郎, 田村裕和, 鵜養美冬 A, 石元茂 B, 大谷友和, 小池武志, 佐藤美沙子, 千賀信幸, 細見健二, 馬越, 三輪浩司, 山本剛史, 他 Hyperball-J.
Current estimation of the background level Ken Sakashita ( Osaka University ) for the E391a collaboration 1.Overview/Motivation 2.4  data analysis 3.2.
CP violation in B decays: prospects for LHCb Werner Ruckstuhl, NIKHEF, 3 July 1998.
Future prospects on K-decays at KEK Hyosang Lee Pusan National University Nagoya.
1 Status of the T2K long baseline neutrino oscillation experiment Atsuko K. Ichikawa (Kyoto univeristy) For the T2K Collaboration.
Status of E14 G.Y.Lim IPNS, KEK. E14 Experiment Step-by-step approach to precise measurement of Br( K L    ) KEK-PS E391a J-PARC E14 (Step-1) J-PARC.
May 26-27, 2005Tadashi Nomura (Kyoto U), KRare05 at Frascati, Italy1 KOPIO Beam Catcher Tadashi Nomura (Kyoto U.) Contents –What is Beam Catcher? –Concept.
Current Status of E14 Experiment at J-PARC 정명신, 김용주 1, 우종관 1, 고재우 1, 임계엽 2, 김은주 3, 안정근 4, 이효상 5 한양대학교, 1 제주대학교, 2 KEK, 3 전북대학교, 4 부산대학교, 5 서울대학교.
V.Duk, INR Moscow Quarks-2008, May OKA Experiment for Studying Rare Kaon Decays Viacheslav Duk, INR Moscow for collaboration.
Simulation of Heavy Hypernuclear Lifetime Measurement For E Zhihong Ye Hampton University HKS/HES, Hall C Outline: 1,Physics 2,Detectors 3,Events.
The New CHOD detector for the NA62 experiment at CERN S
Introduction to the E391a.
The η Rare Decays in Hall D
KOPIO meeting, T. Nomura (Kyoto U.)
Kyoto University H. Nanjo
POFPA 17/3/06 A. Ceccucci K & B: Theory vs. Experiments
 Results from KTeV Introduction The KTeV Detector
Tadashi Nomura (Kyoto U), KRare05 at Frascati, Italy
A New Measurement of |Vus| from KTeV
S. Y. Lee Pusan National University
L. Littenberg - BNL K-Rare Decays Frascati - 27 May 05
KEK-PS E391a Run3データを用いたKL→π0νν解析の現状
KEK, 阪大RCNPA, 阪大理B, 京大理C, 原研先端研D,
Experimental Search for the Decay
Experimental Search for the Decay
Measurement of KL  p0nn decay
Presentation transcript:

New Developments of Flavor Physics Kyoto University H. Nanjo for E391a and K O TO collaboration

New Developments of Flavor Physics 2009 KEK-PS E391a –The first dedicated experiment for K L  . J-PARC E14 to measure Br(K L   ) at J-PARC –K O TO (K0 at Tokai) Japan-USA-Russia-Taiwan-Korea –5 countries and 15 institutes. Based on E391a collaboration. New members are joining. We aim to discover K L   with the similar method used in the E391a. Collaboration 2 KEK Kyoto NDA Osaka Saga Yamagata Arizona State Chicago Michigan JINR National Taiwan Pusan National Seoul CheonBuk National Jeju National

New Developments of Flavor Physics 2009 Flavor Physics –Direct CP violation. –Br(K L  0 )    :Complex phase in CKM (Height of unitary triangle) Beyond the SM –Rare FCNC process (highly suppressed in SM). Br(K L  0 )=(2.8  0.4)  –Very Sensitive to new physics(TeV-Scale Physics). Small theoretical uncertainty –Short distance physics (>99% due to t quark) –  2% uncertainty in (Br  )  Golden mode. Motivation 3

New Developments of Flavor Physics 2009 K O TO Physics Run 2011  2014 E391a New Physics Status and Room for New Physics 4 Chance to reach TeV-scale New Physics using Kaon  Next-Generation World-Wide Kaon Physics –KEK-PS E391 Run2 –Run3 analysis  K O TO –Grossman-Nir bound –model independent (can be violated if LFV) –indirect limit from K +    BNL E797/E949  CERN NA62 European Rare-decays Experiments with Kaons, FNAL Project-X

New Developments of Flavor Physics 2009 Concept of Experiment K L beam (proton  target) –neutral beam line »Long beam line  Kill particles with shorter lifetime »Charged particle sweeping magnet. »Pb photon absorber  reduce beam photons »Collimator  shaping (  source of beam halo) –Core : K L, photon, neutron –Halo : neutron scattering on the surface of collimator Detector –   (  ) and nothing Photon calorimeter and hermetic vetos 5

New Developments of Flavor Physics 2009 Concept of Experiment How to make KL beam? –Proton beam  Target  K L 6 proton target KL

New Developments of Flavor Physics 2009 Concept of Experiment How to make KL beam? –Proton beam  Target  K L »Charged particles »neutral short-lived particles »photon »neutron 7 proton target photon neutron charged particle KL Short Lived

New Developments of Flavor Physics 2009 Concept of Experiment How to make KL beam? –Proton beam  Target  K L  Shaping Collimator »Charged particles »neutral short-lived particles »photon »neutron 8 proton target photon neutron charged particle collimator KL Short Lived

New Developments of Flavor Physics 2009 Concept of Experiment How to make KL beam? –Proton beam  Target  K L  Shaping Collimator »Charged particles  sweeping magnet »neutral short-lived particles  long beam line »photon  Pb absorber (kill  but pass KL) »neutron 9 B proton target photon neutron charged particle collimator Pb KL Short Lived c  K L 15000mm   87mm   79mm K S 27mm

New Developments of Flavor Physics 2009 Concept of Experiment How to make KL beam? –Proton beam  Target  K L  Shaping Collimator –core : neutron, photon –halo : neutron (scattering at Pb /on the surface of collimator) 10 B proton target neutron collimator Pb KL halo neutron core photon, neutron

New Developments of Flavor Physics 2009 Concept of Experiment How to detect K L  0 ? –   (  ) and nothing Photon calorimeter 11 B proton target collimator Pb KL 00   halo neutron core photon, neutron

New Developments of Flavor Physics 2009 Concept of Experiment How to detect K L  0 ? –   (  ) and nothing Photon calorimeter and hermetic vetos –for photons 12 B proton target collimator Pb KL 00   halo neutron core photon, neutron 00  

New Developments of Flavor Physics 2009 Concept of Experiment How to detect K L  0 ? –   (  ) and nothing Photon calorimeter and hermetic vetos –for photons and charged particles 13 B proton target collimator Pb KL 00   halo neutron core photon, neutron -- ++

New Developments of Flavor Physics 2009 Concept of Experiment How to detect K L  0 ? –   (  ) and nothing Photon calorimeter and hermetic vetos –for photons and charged particles Beam hole veto under huge core  /n flux  Weaker veto. 14 B proton target collimator Pb KL 00   halo neutron core photon, neutron

New Developments of Flavor Physics 2009 Concept of Experiment How to detect K L  0 ? –   (  ) and nothing Photon calorimeter and hermetic vetos –for photons and charged particles Beam hole veto under huge core  /n flux  Weaker veto. Make beam hole small!  Pencil Beam 15 B proton target collimator Pb KL 00   halo neutron core photon, neutron

New Developments of Flavor Physics 2009 Concept of Experiment How to detect K L  0 ? –   (  ) and nothing Photon calorimeter and hermetic vetos –for photons and charged particles Beam hole veto under huge core  /n flux  Weaker veto. Make beam hole small! 16 B proton target collimator Pb KL 00   halo neutron core photon, neutron Pencil Beam

New Developments of Flavor Physics 2009 Concept of Experiment 17 proton target Pb KL 00   halo neutron core photon, neutron How to reconstruct K L  0 ? –  in Calorimeter and nothing –Energy and Position. –Reconstruct   –assuming KL vertex in the beam line thanks to the pencil beam. –Decide Z vtx with  0 invariant mass.   0 full reconstruction

New Developments of Flavor Physics 2009 Concept of Experiment 18 proton target Pb KL 00   halo neutron core photon, neutron How to reconstruct K L  0 ? –  in Calorimeter and nothing –Energy and Position. –Reconstruct   –assuming KL vertex in the beam line thanks to the pencil beam. –Decide Z vtx with  0 invariant mass.   0 full reconstruction  E1 E2

New Developments of Flavor Physics 2009 Concept of Experiment Kinematics of K L   –  0 P T -Z vtx Plane (Kinematics and Fiducial) – Higher P T distribution of  0 –Max 231 MeV/c (V-A theory) – Kaon-orign background Veto and Kinematics 19 Z Z K L →2γ PTPT PTPT K L →2π 0 signal region K L →π + π - π 0  0  0  0 (even) +-0+-0 Signal Region

New Developments of Flavor Physics 2009 Concept of Experiment 20 B proton target collimator Pb   0 /  0 production halo neutron  Halo neutron background –halo neutron  interact with detector component  create  0 /  0  decay to 2  –Vertex position  shift due to Energy mis-measurement –photonuclear, neutron-contami  0 mass

New Developments of Flavor Physics 2009 halo-n background in P T -Z vtx Plane – Contamination into the signal box Point –Suppress halo-n –Lower halo-n momentum –Reduce material –Place it far from signal region –Veto at  0 production Concept of Experiment 21 Z Z halo-n CV-  PTPT PTPT halo-n CC02 π 0 signal region halo-n CV-  0

New Developments of Flavor Physics 2009 KLKL E391a Experiment K L production with KEK 12GeV PS –2 x protons on target (POT) per 2sec spill, 4sec cycle –production angle: 4°, K L peak momentum 2GeV/c, n/K L ratio: ~40  0 and nothing. –Pure CsI Calorimeter –Hermetic Vetos Physics runs –Run I: February to July of 2004 “Express” analysis with 10% data published in PRD (2006) –Run II: February to April of 2005 (~ 32 days without break) published in PRL(2007) –Run III: October - December of 2005 Analysis  Expect to be finished in

New Developments of Flavor Physics 2009 E391 Detector a 23 Decay region –High vacuum: Pa to suppress the background from interactions w/ residual gas Detector components –Set in the vacuum: 0.1 Pa separating the decay region from the detector region with “membrane”: 0.2mmt film

New Developments of Flavor Physics 2009 E391a Status K L   –Run2 Published Phys.Rev.Lett.100,201802(2008) No event observed. (BG estimate 0.41) –Run3 Analysis ~ 2 times higher sensitivity  expect to be finished in 2009 –3 order to SM sensitivity  K O TO K L     X (X  light pseudoscalar particle X –Published with Run2 data Phys.Rev.Lett.102,051802(2009) K L     X (X  –Analysis in final stage with Run3 data. 24

New Developments of Flavor Physics Strategy from E391a to K O TO High intensity beam New beam line (halo-n surpress) Detector upgrade (background) MR(50GeV PS) perimeter~1.6km 30 GeV for slow ext. 2  ppp 0.3MW 0.7s spill/3.3s repe. T1 Ni Target E391 det. at 16 deg line proton Exp Hall 20m neutral beamline

New Developments of Flavor Physics High intensity beam Flux x RunTime x Acceptance  ~2.8 SM event KOTOE391a (Run2) Proton energy30 GeV12 GeV Proton intensity2e142.5e12 Spill/cycle0.7/3.3sec2/4sec Extraction Angle 16 deg4 deg Solid Angle 9  Str12.6  Str KL yield/spill7.1e132.4e11 x30 /sec Run Time3 s.m. years =12 months. 1 month x10 Decay Prob.4%2% x 2 Acceptance3.6% * 0.67% x5 KOTO E391a * without Back splash loss

New Developments of Flavor Physics 2009 New Beamline 27 Jan/2009 Collimator Fabrication We fixed the beamline design and fabrication is on-going.

New Developments of Flavor Physics 2009 halo-n surpression E391 : core  tail : level KOTO : : level –softer neutron momentum. –beamline design  Next talk by Shimogawa. 28

New Developments of Flavor Physics Detector Upgrade NCC Increase Veto Performance Reduce halo-n affection Cope with high rate NCC : move to upstream, full active pure-CsI, WLS fiber readout. –To reduce halo neutron BG and monitor halo-n itself in stew. CsI 7  7  30cm  2.5  2.5  50cm –Reduce inefficiency, improve energy resolution, discrimination of  fusion –CW base with amp. to reduce heat and increase gain. CV : 2-layer design Scintillator + WLS fiber + MPPC (light, space, cost) BHPV : Pb converter + Aerogel Cerenkov radiator + winstone cone light collection. (single is ~1MHz   impossible  totally different.) MB : increase the thickness  To reduce the inefficiency

New Developments of Flavor Physics

New Developments of Flavor Physics

New Developments of Flavor Physics

New Developments of Flavor Physics

New Developments of Flavor Physics

New Developments of Flavor Physics

New Developments of Flavor Physics Summary and prospects KOTO experiment to measure Br(K L   ) Neutral beamline design is fixed and fabrication is on-going and delivery and construction in this FY. Beamline survey in ~Oct with the BL. Detector upgrade is being designed and prototype is made and tested toward Engineering run in 2010 and Physics run in 2011.