4STAR: Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research Development and Results from First Test-flights A collaboration involving: PNNL:

Slides:



Advertisements
Similar presentations
Proposed new uses for the Ceilometer Network
Advertisements

Using a Radiative Transfer Model in Conjunction with UV-MFRSR Irradiance Data for Studying Aerosols in El Paso-Juarez Airshed by Richard Medina Calderón.
Analysis of SPUV aerosol data for the May 2003 BBC2 campaign Piet Stammes Wouter Knap KNMI.
May 10, 2004Aeronet workshop Can AERONET help with monitoring clouds? Alexander Marshak NASA/GSFC Thanks to: Y. Knyazikhin, K. Evans, W. Wiscombe, I. Slutsker.
The EvK2 Pyramid and the AERONET network “Atmospheric Brown Cloud" Characterization via Sunphotometer Observations G.P. Gobbi, F. Barnaba, and F. Angelini.
Constraining aerosol sources using MODIS backscattered radiances Easan Drury - G2
Ben Kravitz Tuesday, November 10, 2009 AERONET. What is AERONET? AErosol RObotic NETwork Worldwide collection of sun photometers.
1 Cloud Droplet Size Retrievals from AERONET Cloud Mode Observations Christine Chiu Stefani Huang, Alexander Marshak, Tamas Várnai, Brent Holben, Warren.
Figure 2.10 IPCC Working Group I (2007) Clouds and Radiation Through a Soda Straw.
An Introduction to Using Angular Information in Aerosol Remote Sensing Richard Kleidman SSAI/NASA Goddard Lorraine Remer UMBC / JCET Robert C. Levy NASA.
Single-Scattering Stuff + petty chap 12 intro April 27-29, 2015.
Direct Radiative Effect of aerosols over clouds and clear skies determined using CALIPSO and the A-Train Robert Wood with Duli Chand, Tad Anderson, Bob.
CINDI Workshop, BIRA, Brussels, Pandora Direct Sun Data during CINDI Alexander Cede Nader Abuhassan Jay Herman.
NASA Ames: P. Russell, J. Redemann, S. Dunagan, R. Johnson, J. Zavaleta PNNL: B. Schmid, C. Flynn, E. Kassianov NASA GSFC: AERONET Team A collaboration.
EARLINET and Satellites: Partners for Aerosol Observations Matthias Wiegner Universität München Meteorologisches Institut (Satellites: spaceborne passive.
SeaDAS Training ~ NASA Ocean Biology Processing Group 1 Level-2 ocean color data processing basics NASA Ocean Biology Processing Group Goddard Space Flight.
Lidar Intercomparion Study with Airborne Aerosol Optical Measurements near Tokyo on April 23, 2001 Toshiyuki Murayama Tokyo University of Mercantile Marine,
M. Van Roozendael, AMFIC Final Meeting, 23 Oct 2009, Beijing, China1 MAXDOAS measurements in Beijing M. Van Roozendael 1, K. Clémer 1, C. Fayt 1, C. Hermans.
Solar Energy Part 1: Resource San Jose State University FX Rongère January 2009.
Mainly sampled Asian outflow in the Alaska phase local forest fire smoke in the Canada phase We expect these phases to represent the two extremes among.
Orbit Characteristics and View Angle Effects on the Global Cloud Field
Trace gas and AOD retrievals from a newly deployed hyper-spectral airborne sun/sky photometer (4STAR) M. Segal-Rosenheimer, C.J. Flynn, J. Redemann, B.
Aerosol Optical Depths from Airborne Sunphotometry in INTEX-B/MILAGRO as a Validation Tool for the Ozone Monitoring Instrument (OMI) on Aura J. Livingston.
The AERONET (AErosol RObotic NETwork) program is a federation of ground-based remote sensing aerosol networks established by NASA and LOA-PHOTONS (CNRS)
The combined use of MODIS, CALIPSO and OMI level 2 aerosol products for calculating direct aerosol radiative effects Jens Redemann, M. Vaughan, Y. Shinozuka,
GSFC. Glaciation Level and Vertical Profile of Droplet Size Associated with Cloud-Aerosol Interactions (D. Rosenfeld) Clean Polluted.
Jetstream 31 (J31) at Mid-Campaign in INTEX-B/MILAGRO: Science Goals, Payload, Example Results, Assessment Phil Russell, Jens Redemann, Brian Cairns, Charles.
Optical properties Satellite observation ? T,H 2 O… From dust microphysical properties to dust hyperspectral infrared remote sensing Clémence Pierangelo.
Measuring UV aerosol absorption. Why is aerosol UV absorption important ? Change in boundary layer ozone mixing ratios as a result of direct aerosol forcing.
The Second TEMPO Science Team Meeting Physical Basis of the Near-UV Aerosol Algorithm Omar Torres NASA Goddard Space Flight Center Atmospheric Chemistry.
1 NOAA-UPRM COOP Program in Atmospheric Sciences and Meteorology, Department of Physics, University of Puerto Rico at Mayagüez, Mayagüez, PR Yaítza.
AERONET Processing Algorithms Refinement AERONET Workshop May , 2004, El Arenosillo, Spain.
Fog- and cloud-induced aerosol modification observed by the Aerosol Robotic Network (AERONET) Thomas F. Eck (Code 618 NASA GSFC) and Brent N. Holben (Code.
Livingston et al. EGU General Assembly April 2007 Comparison of airborne sunphotometer and satellite sensor retrievals of aerosol optical depth during.
4STAR: Spectrometer for Sky-Scanning, Sun- Tracking Atmospheric Research Results from Test-flight Series PNNLNASA AmesNASA GSFC B. SchmidS. DunaganS. Sinyuk.
Redemann, ICARTT workshop, Durham, NH, Aug.9-12, 2005 Airborne measurements of spectral direct aerosol radiative forcing - a new aerosol gradient method.
Airborne sunphotometer (AATS-14) measurements in ARCTAS - first insights into their combined use with satellite observations to study Arctic aerosol radiative.
Aerosol Optical Depth Measurements by Airborne Sun Photometer in SOLVE II: Comparisons to SAGE III, POAM III and Airborne Spectrometer Measurements* P.
NASA’s Coastal and Ocean Airborne Science Testbed (COAST) L. Guild 1 *, J. Dungan 1, M. Edwards 1, P. Russell 1, S. Hooker 2, J. Myers 3, J. Morrow 4,
4STAR: Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research A collaboration involving: PNNL: Connor J. Flynn, B. Schmid, E. Kassianov NASA.
Retrieval of biomass burning aerosols with combination of near-UV radiance and near -IR polarimetry I.Sano, S.Mukai, M. Nakata (Kinki University, Japan),
Vertically resolved aerosol optical properties over the ARM SGP site B. Schmid, H. Jonsson, A. Strawa, B. Provencal, K. Ricci, D. Covert, R. Elleman, W.
4STAR Instrument Technology Development Dunagan, 1/13 4STAR: Spectrometer for Sky-Scanning, Sun- Tracking Atmospheric Research Instrument Design, Development.
3km 1.7 km 60 o 30 o With 1dg FOV, 3km from the cloud, the foot print perpendicular to the cloud will be about 50m. Cloud-Aerosol Scanner: Possible measurements.
Jetstream 31 (J31) in INTEX-B/MILAGRO. Campaign Context: In March 2006, INTEX-B/MILAGRO studied pollution from Mexico City and regional biomass burning,
Aerosol optical properties measured from aircraft, satellites and the ground during ARCTAS - their relationship to aerosol chemistry and smoke type Yohei.
AERONET DRAGON Campaign, Summer 2011 Christina Justice College Park Scholars – Science & Global Change Program Environmental Science and Policy
Airborne Sunphotometry and Closure Studies during the SAFARI-2000 Dry Season Campaign B. Schmid BAER/NASA Ames Research Center, Moffett Field, CA, USA.
Airborne Sunphotometry and Closure Studies in the SAFARI-2000 Dry Season Campaign B. Schmid 1, P.B. Russell 2, P.Pilewskie 2, J. Redemann 1, P.V. Hobbs.
Phil Russell 1, John Livingston 2, Beat Schmid 3, Jens Redemann 4, Stephanie Ramirez 4, Qin Zhang 4 and many other contributors 10 Years of Studies Comparing.
The Use of Spectral and Angular Information In Remote Sensing
Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) Earth Science Division - NASA Ames Research Center 2006 A concept for a sun-sky.
Horizontal variability of aerosol optical properties observed during the ARCTAS airborne experiment Yohei Shinozuka 1*, Jens Redemann 1, Phil Russell 2,
Challenges in remote sensing of CCN concentration An assessment based on airborne observations of AOD, CCN, chemical composition, size distribution, light.
INSIGHTS FROM CAR AIRBORNE MEASUREMENTS DURING INTEX-B (Mexico) FOR SATELLITE VALIDATION C. K. Gatebe, 1,2 Michael D. King, 2 G.T. Arnold, 1,3 O. Dubovik,
J. Redemann 1, B. Schmid 1, J.A. Eilers 2, R. Kahn 3, R.C. Levy 4,5, P.B. Russell 2, J.M. Livingston 6, P.V. Hobbs 7, W.L. Smith Jr. 8, B.N. Holben 4 1.
The study of cloud and aerosol properties during CalNex using newly developed spectral methods Patrick J. McBride, Samuel LeBlanc, K. Sebastian Schmidt,
Aerosol optical properties measured from aircraft, satellites and the ground during ARCTAS - their relationship to CCN, aerosol chemistry and smoke type.
Studying the radiative environment of individual biomass burning fire plumes using multi-platform observations: an example ARCTAS case study on June 30,
Jens Redemann 1, B. Schmid 1, J. M. Livingston 2, P. B. Russell 3, J. A. Eilers 3, P. V. Hobbs 4, R. Kahn 5, W. L. Smith Jr. 6, B. N. Holben 7, C.K. Rutledge.
Main Topic: Vertical Characterization of Aerosols Sub-topic: Tropospheric and Stratospheric Aerosol Erin Robinson, July5, 2010.
The Lodore Falls Hotel, Borrowdale
Fourth TEMPO Science Team Meeting
Babes-Bolyai University, RO - General and scientific background -
Near UV aerosol products
sun- (/sky-) photometer ground-networks
Absolute calibration of sky radiances, colour indices and O4 DSCDs obtained from MAX-DOAS measurements T. Wagner1, S. Beirle1, S. Dörner1, M. Penning de.
Robert Wood, Duli Chand, Tad Anderson University of Washington
Robert Wood, Duli Chand, Tad Anderson University of Washington
Robert Wood, Duli Chand, Tad Anderson University of Washington
Presentation transcript:

4STAR: Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research Development and Results from First Test-flights A collaboration involving: PNNL: C. Flynn, B. Schmid, C. Kluzek NASA Ames: S. Dunagan, R. Johnson, P. Russell, and J. Redemann NASA GSFC: B. Holben

4STAR: Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research AERONET-like capability Ground-based direct beam + sky scanning yields column- integrated properties: AOD Size distributions Single-scattering albedo Asymmetry parameter Sphericity Cloud OD 4STAR: AATS-like capability: AOD at 13 wavelengths H 2 O horizontally and vertically resolved AATS-like capability: AOD at 13 wavelengths H 2 O horizontally and vertically resolved

Meet the family…4STAR(2012- AATS-6( ) AATS-14(1996-

4STAR Integration and test flights on PNNL/Battelle G-1, Aug-Sep 2010

Anticipated 4STAR data products: Solar Direct Beam Atmospheric Transmittance Aerosol Optical Depth and Ångstrom exponent Aerosol Extinction (via aircraft vertical profiling) Gases: H 2 O, O 3, NO 2, CO 2 (column and in profile) Angularly-resolved sky radiance inversions Scattering phase function, asymmetry parameter Aerosol size distributions, fine/coarse mode fraction Aerosol sphericity Aerosol absorption Zenith radiance cloud retrievals Cloudy/clear transition zone (Marshak, Chiu) Cloud Optical Depth, Droplet effective Radius (with auxilliary measurements, Barker et al.) Water vapor, liquid water, ice water fractionation (Daniels et al.)

4STAR and its Use…

Key Technological Hurdles Sun tracking across pressure differential Entrance window contamination Fiber optic couplings with <1% calibration stability (Connections/Rotation) Irradiance calibration to 1% over a period of months. Radiance calibration to a few percent. Stray light rejection: measure skylight down to within 3° of sun Sky scan within 100 seconds (10 km in flight) Stray light inside spectrometers

Ground Prototypes (4STAR-G)

Rotating Fiber Optics Coupling Throughput Repeatability

Radiance Calibration4STAR-Ground AERONET Cimel NASA Ames 30” Sphere

4STAR-Ground AERONET Cimel Jens Redemann Roy Johnson

Stray light rejection close to Sun - old barrel

Size Distribution Retrieval using AERONET Code

Sun Photometer Inter-Comparison Experiment Mauna Loa, Aug Sep STAR Prede AATS-14 3 Cimels

Stray light inside Spectrometers 17

18 3 flights in Sep 2010: 1.Pilots only: Airworthiness certification 2.Science ops: Pasco, WA to San Jose, CA 3.Science ops: San Jose local Flights met all goals (sun tracking only). Large data set to guide improvements & test/demo flights in flights in Sep 2010: 1.Pilots only: Airworthiness certification 2.Science ops: Pasco, WA to San Jose, CA 3.Science ops: San Jose local Flights met all goals (sun tracking only). Large data set to guide improvements & test/demo flights in max alt 5.7 km

Sun Tracking Performance 19 9/28/2010; SJC t/o ~10 am

Vertical profile of optical depth (normalized to top of layer) 20 (nm) 9/28/2010 SJC ~10 am

Key Technological Hurdles Sun tracking across pressure differential. Yes, some issues with glint Entrance window contamination. Not yet Fiber optic couplings with <1% calibration stability (Connections/Rotation). Yes Irradiance calibration to 1% over a period of months. Not yet Radiance calibration to a few percent. Yes Stray light rejection: measure skylight down to within 3° of sun. Yes Sky scan within 100 seconds (10 km in flight). Yes Stray light inside spectrometers. Yes

Next steps… In FY11: bring 4STAR to full science capability Install/characterize skylight optics Improve FOV uniformity of sun optics Make tracking immune to glint Adding temperature-stabilized enclosure for spectrometers and electronics Apply correction of stray light inside spectrometer Full characterization in test-flight series on G-1 in April, Jul, Sep Mauna Loa Calibration In FY12 Hardening and retrieval algorithms 4STAR/AATS-14 intercomparison flight on NASA P-3 DOE/ARM Mission on G-1, Cape Cod, Summer and Winter 2012 Funding: NASA, DOE ARM, BMI, PNNL