Thin Film & Battery Materials Lab. National Research Lab. Kangwon Nat’l Univ. Cycle performance of Si-based Thin Film Anodes for Li-ion Batteries Kwan-Soo.

Slides:



Advertisements
Similar presentations
Environmental Dependence on Tribological Behavior of Diamond-like Carbon Films with Nano-undulated Surface Jin Woo Yi a,b, Se Jun Park a, Kwang-Ryeol Lee.
Advertisements

1 Solid oxide membranes for hydrogen separation and isolation Aurelija Martišiūtė.
Polymer graphite composite anodes for Li-ion batteries Basker Veeraraghavan, Bala Haran, Ralph White and Branko Popov University of South Carolina, Columbia,
Filippo Parodi /Paolo Capobianco (Ansaldo Fuel Cells S.p.A.)
National Science Foundation Synthesis of Solid Electrolyte (Li x Al y Si z O) via ALD Jane P. Chang, University of California-Los Angeles, DMR
Investigation of the Catalytic Activity of Plasma-Treated Fe, Ni, and Co Foil for Water Splitting Nick Lavrov, Olivia Watson.
ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY (EIS): A TOOL FOR THE CHARACTERIZATION OF SPUTTERED NIOBIUM FILMS M. Musiani Istituto per l’Energetica e le Interfasi,
Pgs How does our lab from Friday link to corrosion?  Corrosion is the process of returning metals to their natural state  It’s a REDOX reaction!!
Synthesis of metal hydrides employing vapor deposition technologies Irmantas Barnackas, prof.L. Pranevičius Lithuanian Energy Institute
Electro-Ceramics Lab. Preparation and electrical properties of (Ba 1-x,Sr x )(Ti 1-y,Zr y )O 3 thin films for application at high density DRAM thin films.
Techniques of Synthesizing Wafer-scale Graphene Zhaofu ZHANG
Studies on Capacity Fade of Spinel based Li-Ion Batteries by P. Ramadass, A. Durairajan, Bala S. Haran, R. E. White and B. N. Popov Center for Electrochemical.
High Capacity Graphite Anodes for Li-Ion battery applications using Tin microencapsulation Basker Veeraraghavan, Anand Durairajan, Bala Haran Ralph White.
Capacity Fade Studies of LiCoO 2 Based Li-ion Cells Cycled at Different Temperatures Bala S. Haran, P.Ramadass, Ralph E. White and Branko N. Popov Center.
Lecture 223/19/07. Displacement reactions Some metals react with acids to produce salts and H 2 gas Balance the following displacement reaction: Zn (s)
EE235 Nanofabrication John Gerling High-performance lithium battery anodes using silicon nanowires.
Electroless 0,3 µm Au coating on thick Ni, deposited on Si a b a – surface morphology and Auger profiling spectroscopy b – cross section morphology and.
Nanofabrication Using Viral Biotemplates for MEMS Applications NSF Grant Konstantinos Gerasopoulos, Ekaterina A. Pomerantseva, Xiaozhu Fan, Adam.
S. J. Parka),b) K.-R. Leea), D.-H. Kob), J. H. Hanc), K. Y. Eun a)
Thin Film & Battery Materials Lab. National Research Lab. Kangwon Nat’l Univ. Heon-Young Lee a, Seung-Joo Lee b, Sung-Man Lee a a Department of Advanced.
PREPARATION OF ZnO NANOWIRES BY ELECTROCHEMICAL DEPOSITION
National Science Foundation Thin Film Electrolytes for Energy Devices Jane P. Chang, University of California, Los Angeles, DMR Outcome: Researchers.
Characterization of CuInSe2 Thin Film Solar Cells Chukwuemeka Shina Aofolaju 1 Advisors: Dr. Eric Egwu Kalu 1 Dr. Paul Salvador 2 By 1. FAMU – FSU College.
In this study, it has been found that annealing at ambient air at 500 ˚C of DC sputtered Mo bilayer produce MoO x nanobelts. Evolution of MoO x nanobelts.
Daniel Wamwangi School of Physics
Li-Mn-O Thin Film Cathode prepared at Room Temperature Thin Film & Battery Materials Lab. National Research Lab. Kangwon Nat’l Univ. Jeong-Kyu Lim a, Hyeon-Young.
박막및 전지재료연구실 강원대학교 1 Cyclic voltammetry for LiCoO 2 deposited on Fsi (Flat-Si) and ESi (Etched-Si) Scan rate = 0.1 mV/sec ESi FSi Cyclic voltammetry with.
Lithium-Ion Battery Anodes Juchuan Li, Fuqian Yang, and Yang-Tse Cheng Department of Chemical & Materials Engineering, University of Kentucky Artificial.
Fabrication and characterization of Au-Ag alloy thin films resistance random access memory C. C. Kuo 1 and J. C. Huang 1,* 1 Department of Materials and.
Growth and Characterization of Co nanoparticles and nanowires 劉全璞國立成功大學材料科學及工程學系半導體奈米材料實驗室.
1 Oxidation-Reduction AKA Redox OB: Pages
Department of Chemistry-BK 21, SungKyunKwan Univ.
Thin Film & Battery Materials Lab. National Research Lab. Kangwon Nat’l Univ. AS deposited LiCoO 2 thin film cathodes prepared by RF magnetron sputtering.
The deposition of amorphous indium zinc oxide (IZO) thin films on glass substrates with n-type carrier concentrations between and 3x10 20 cm -3 by.
Mitglied der Helmholtz-Gemeinschaft DEPOSITION OF CORROSION PREVENTING COATINGS FOR DUAL-ION BATTERIES Motivation The CV and CA diagrams confirm the electrochemical.
Reminders Quiz#2 and meet Alissa and Mine on Wednesday –Quiz covers Bonding, 0-D, 1-D, 2-D, Lab #2 –Multiple choice, short answer, long answer (graphical.
Highly Ordered Deposition of MgAl-CO3 Layered Double Hydroxides on Si(100) Surface by Solvothermal Treatment 이종현 , 이석우 , 송여진 , 정덕영* 성균관대학교 Skku. Inorganic.
Self Forming Barrier Layers from CuX Thin Films Shamon Walker, Erick Nefcy, Samir Mehio Dr. Milo Koretsky, Eric Gunderson, Kurt Langworthy Sponsors: Intel,
High Temperature Oxidation of TiAlN Thin Films for Memory Devices
Introduction P. Chelvanathan 1, Y. Yusoff 2, M. I. Hossain 1, M. Akhtaruzzaman 1, M. M. Alam 3, Z. A. AlOthman 3, K. Sopian 1, N. Amin 1,2,3 1 Solar Energy.
Ho-Gun Kim, Seung-Ho Ahn, Jung-Gu Kim, *Se-Jun Park, *Kwang-Ryol Lee, **Rizhi Wang SungKyunKwan University, Korea *Korea Institute of Science and Technology,
Atomic Layer Deposition for Microchannel Plates Jeffrey Elam Argonne National Laboratory September 24, 2009.
Introduction. During the last decade the interest in copper passivity significantly increased due to the important role of copper in microelectronic industry.
Frank Batten College of Engineering & Technology Old Dominion University: Pulsed Laser Deposition of Niobium Nitride Thin Films APPLIED.
Electro-Ceramics Lab. Electrical Properties of SrBi 2 Ta 2 O 9 Thin Films Prepared by r.f. magnetron sputtering Electro-ceramics laboratory Department.
Atomic Layer Deposition for Microchannel Plate Fabrication at Argonne
IV. Results and Discussion Effect of Substrate Bias on Structure and Properties of W Incorporated Diamond-like Carbon Films Ai-Ying Wang 1, Kwang-Ryeol.
2-D Nanostructure Synthesis (Making THIN FILMS!)
NSF Grant Number : MET DMR PI : Dr. R. G. Reddy Institution : The University of Alabama Title : Fundamental Studies on Intermetallic Aluminides.
Introduction. During the last decade the interest in copper passivity significantly increased due to the important role of copper in microelectronic industry.
Study of some gilded film/glass interfaces and of one standard type of “liquid gold” XVI ICF TECHNICAL EXCHANGE CONFERENCE 9 th -12 th October 2004 Karlovy.
B. Deniz Polat, Levent Eryılmaz*, Özgül Keleş,
Production of non-porous and porous Cu-Sn/C Multilayered system via Electron Beam Evaporation Techniques B.D. Polat 1, N. Sezgin 1, K.Kazmanlı 1, Ö. Keleş.
Date of download: 6/28/2016 Copyright © ASME. All rights reserved. From: Impact of Corrosion Test Container Material in Molten Fluorides J. Sol. Energy.
Date of download: 7/6/2016 Copyright © 2016 SPIE. All rights reserved. X-ray diffraction (XRD) 2θ-ω scans around (00·2) reflection for InxGa1−xN layers.
John Mortimer, Fan Xia and Junjie Niu
Effect of Heat Treatment on Properties of Sputtered Co100-xCux Film
Motivation Experimental method Results Conclusion References
Centro de Investigación y de Estudios Avanzados del Institúto Politécnico Nacional (Cinvestav IPN) Palladium Nanoparticles Formation in Si Substrates from.
1.6 Magnetron Sputtering Perpendicular Electric Magnetic Fields.
Implantable Solid Electrolyte Interphase in Lithium-Metal Batteries
Controllable Multinary Alloy Electrodeposition for Thin-Film Solar Cell Fabrication: A Case Study of Kesterite Cu2ZnSnS4  Jie Ge, Yanfa Yan  iScience 
He-Qun Dai1,2, Hao Xu1,2, Yong-Ning Zhou2, Fang Lu1, and Zheng-Wen Fu
Cycling Li-O2 batteries via LiOH formation and decomposition
High-Energy Li Metal Battery with Lithiated Host
Volume 1, Issue 2, Pages (August 2016)
Highly Fluorinated Interphases Enable High-Voltage Li-Metal Batteries
Volume 1, Issue 3, Pages (November 2017)
Yolk-Shell Architecture with Precision Expansion Void Control for Lithium Ion Batteries  Runwei Mo, David Rooney, Kening Sun  iScience 
Cycling Li-O2 batteries via LiOH formation and decomposition
Presentation transcript:

Thin Film & Battery Materials Lab. National Research Lab. Kangwon Nat’l Univ. Cycle performance of Si-based Thin Film Anodes for Li-ion Batteries Kwan-Soo Lee, Jae-Bum Kim, Bong-Suk Jun and Sung-Man Lee Kangwon Nat’l Univ., Chunchon, Korea

Thin Film & Battery Materials Lab. National Research Lab. Kangwon Nat’l Univ. Negative Electrodes for Thin Film Microbattery Negative electrode SiTON Sn, Si SnO, SnO 2 Sn 3 N 4, Zn 3 N 2 Year Li Silicide Sn Alloy Low melting point (181 ℃ ) Very strong reactivity with moisture Limits application area Li metal Oxide or Nitride Formation of Li 2 O or Li 3 N Irreversible capacity loss at the 1st cycle High capacity (~4000mAh/g) Little irreversible capacity Very large volume expansion during cycling Si : Candidate material Little reactivity with air (respectively Li)

Thin Film & Battery Materials Lab. National Research Lab. Kangwon Nat’l Univ. Objectives Adhesion effect between substrate and deposited thin film on the cycle properties of Si-based thin-film electrode Deposition condition effect The variation of thin film deposition condition Without negative d.c. bias With negative d.c. bias Substrate effect Morphology Chemically-etched Cu foil Flat-Cu foil Adhesion layer effect Insertion of adhesion layer Zr-deposited Cu foil Bare-Cu foil

Thin Film & Battery Materials Lab. National Research Lab. Kangwon Nat’l Univ. Experimental process Thin Film Deposition Substrate : Ni, Cu foil ( 12 mm dia. ) Substrate rotation : 13 ~ 14 rpm. Targets : Si ( 2 in. ) Deposition Conditions : - Sputtering method - Base pressure : 2  Torr - Working pressure : 5  Torr ( Ar ) - Negative DC bias ( V ) Substrate etching Characterization Substrate : Cu foil ( 12 mm dia. ) Etchant : A Solution ( FeCl 3 + HCl + H 2 O ), B Solution ( HNO 3 + H 2 O ) Structure analysis - XRD ( X-ray diffraction ) Surface roughness analysis - AFM ( Atomic Force Microscope ) Surface morphology observation - FESEM ( Field-Emission Scanning Electron Mocroscopy ) - SEM ( Scanning Electron Mocroscopy ) Electrochemical analysis - CR2016 Coin Cells - Counter Electrode : Li metal - Electrolyte : 1 M LiPF6 dissolved in EC/DEC(1:1 Vol)

Thin Film & Battery Materials Lab. National Research Lab. Kangwon Nat’l Univ. (a) No Bias (b) Bias applied (-100 V) Substrate : Si-wafer Bias effect : Morphology Img. RMS : nm Img. RMS : nm FESEM Images AFM Images (a) (b) (a) (b) (a) (b)

Thin Film & Battery Materials Lab. National Research Lab. Kangwon Nat’l Univ. Bias effect : Electrochemical properties The 1 st and 2 nd cycle Discharge/charge curves (a) (b) After 1 st cycle discharge/charge EDAX mapping (a) No Bias (b) Bias applied (-100 V)

Thin Film & Battery Materials Lab. National Research Lab. Kangwon Nat’l Univ. After 10 cycles Bias effect : Surface morphology Cycle performance (a)(b) EDAX mapping (a) No Bias (b) Bias applied (-100 V)

Thin Film & Battery Materials Lab. National Research Lab. Kangwon Nat’l Univ. A Solution : FeCl 3 + HCl + H 2 O B Solution : HNO 3 + H 2 O Substrate morphology effect : Surface Morphology FESEM Images (Substrate) (a) Cu foil (raw) (b) Cu foil (etched with A solution) (c) Cu foil (etched with B solution ) (a)(b)(c)

Thin Film & Battery Materials Lab. National Research Lab. Kangwon Nat’l Univ. Substrate morphology effect : Electrochemical Properties The 1 st and 2 nd cycle Discharge/charge curves Cycle performance (a) Cu foil (raw) (b) Cu foil (etched with A solution) (c) Cu foil (etched with B solution )

Thin Film & Battery Materials Lab. National Research Lab. Kangwon Nat’l Univ. Substrate morphology effect : Surface Morphology FESEM Images After 18 cycles (a)(b)(c) (a) Cu foil (raw) (b) Cu foil (etched with A solution) (c) Cu foil (etched with B solution )

Thin Film & Battery Materials Lab. National Research Lab. Kangwon Nat’l Univ. Adhesion layer effect : Electrochemical Properties Cycle performance Cu foil (raw)Cu foil (etched with A solution)Cu foil (etched with B solution ) (a) Cu / Zr / Si (b) Cu / Si

Thin Film & Battery Materials Lab. National Research Lab. Kangwon Nat’l Univ. Adhesion layer effect : Surface Morphology FESEM Images After 18 cycles (a) (b) (a) (b) (a) (b) (a) Cu / Zr / Si (b) Cu / Si Cu foil (raw)Cu foil (etched with A solution)Cu foil (etched with B solution )

Thin Film & Battery Materials Lab. National Research Lab. Kangwon Nat’l Univ. Adhesion layer effect : Cross-sectional images EDAX mapping SEM Images After 18 cycles Reverse & Schematic diagram

Thin Film & Battery Materials Lab. National Research Lab. Kangwon Nat’l Univ. Conclusions The cyclability of Si thin film anode can be improved by applying negative d.c bias and adhesion property between substrate and deposited thin film anode is enhanced. The variation of substrate morphology has an effect on the cyclability of Si thin film anodes. For Si thin film anodes, electrochemical cycling performance is improved with the addition of Zr adhesion layer.