1 High-order coronagraphic phase diversity: demonstration of COFFEE on SPHERE. B.Paul 1,2, J-F Sauvage 1, L. Mugnier 1, K. Dohlen 2, D. Mouillet 3, T.

Slides:



Advertisements
Similar presentations
Spectro-Polarimetric High-contrast Exoplanet Research
Advertisements

The SPHERE/ZIMPOL polarimeter for extra-solar planetary systems Hans Martin SCHMID, ETH Zurich and many collaborators in the SPHERE consortium IPAG Grenoble,
Standard stars for the ZIMPOL polarimeter
Fast & Furious: a potential wavefront reconstructor for extreme adaptive optics at ELTs Visa Korkiakoski and Christoph U. Keller Leiden Observatory Niek.
An analytic approach to the Lyot coronagraph
Anthony Boccaletti Observatoire de Paris LESIA. Several instruments dedicated to Exoplanet detection and characterization with High Contrast Imaging since.
Halftoning for High-Contrast Imaging P. Martinez 1 C. Dorrer 2, E. Aller Carpentier 1, M. Kasper 1, A. Boccaletti 3, and K. Dohlen 4 1 European Southern.
Géraldine Guerri Post-doc CSL
Wavefront Sensing I Richard Lane Department of Electrical and Computer Engineering University of Canterbury Christchurch New Zealand.
Adaptive Optics for Wavefront Correction of High Average Power Lasers Justin Mansell, Supriyo Sinha, Todd Rutherford, Eric Gustafson, Martin Fejer and.
NGAO Companion Sensitivity Performance Budget (WBS ) Rich Dekany, Ralf Flicker, Mike Liu, Chris Neyman, Bruce Macintosh NGAO meeting #6, 4/25/2007.
Pupil Remapping for high dynamical range imaging Olivier Guyon Subaru Telescope National Astronomical Observatory of Japan Hilo, HI Michelson.
NGAO Instrumentation Cost Drivers and Cost Savings September 2008 Sean Adkins.
Thermally Deformable Mirrors: a new Adaptive Optics scheme for Advanced Gravitational Wave Interferometers Marie Kasprzack Laboratoire de l’Accélérateur.
An Optimized Pupil Coronagraph: A New Way To Observe Extrasolar Planets This work was performed for the Jet Propulsion Laboratory, California Institute.
Cophasing activities at Onera
Blue Dot Team « Multi aperture imaging ». BDT sept MAI techniques High accuracy visibility measurement Differential interferometry Nulling.
Spectral Analysis of atmospheres by nulling interferometry Marc OLLIVIER Institut d’Astrophysique Spatiale - Orsay.
Apodized Filter IWA (λ/D)2~4 OWA (λ/D)13 Contrast ~10 -7 Throughput (%)41.4% Shape of the filter and the simulated coronagraphic point spread function.
1 On-sky validation of LIFT on GeMS C. Plantet 1, S. Meimon 1, J.-M. Conan 1, B. Neichel 2, T. Fusco 1 1: ONERA, the French Aerospace Lab, Chatillon, France.
A visible-light AO system for the 4.2 m SOAR telescope A. Tokovinin, B. Gregory, H. E. Schwarz, V. Terebizh, S. Thomas.
19 February 2009 Cophasing sensor for synthetic aperture optics applications First steps of the development of a cophasing sensor for synthetic aperture.
Exoplanet Exploration Program Starshade and Coronagraph Technology Gaps and Paths to Close Them Peter Lawson and Nick Siegler Jet Propulsion Laboratory,
1 Manal Chebbo, Alastair Basden, Richard Myers, Nazim Bharmal, Tim Morris, Thierry Fusco, Jean-Francois Sauvage Fast E2E simulation tools and calibration.
Adaptive Optics Nicholas Devaney GTC project, Instituto de Astrofisica de Canarias 1. Principles 2. Multi-conjugate 3. Performance & challenges.
1 A. Boccaletti Pasadena, Sept th Imaging EGPs with JWST/MIRI and VLT/SPHERE valuable experiences for TPF-C A. Boccaletti, P. Baudoz D. Rouan + coronagraphic.
Optical principles of diffraction focussing, Preparing the way to space borne Fresnel imagers NiceSeptember 23-25, Laurent Koechlin Laboratoire.
Low order modes sensing for LGS MCAO with a single NGS S. Esposito, P. M. Gori, G. Brusa Osservatorio Astrofisico di Arcetri Italy Conf. AO4ELT June.
Tomographic reconstruction of stellar wavefronts from multiple laser guide stars C. Baranec, M. Lloyd-Hart, N. M. Milton T. Stalcup, M. Snyder, & R. Angel.
Lyot Stop Focal Plane Mask OAP3 Out of plane spherical mirror.
AO review meeting, Florence, November FLAO operating Modes Presented by: S. Esposito Osservatorio Astrofisico di Arcetri / INAF.
From NAOS to the future SPHERE Extreme AO system T. Fusco 1, G. Rousset 1,2, J.-L. Beuzit 3, D. Mouillet 3, A.-M. Lagrange 3, P. Puget 2 and many others.
FLAO system test plan in solar tower S. Esposito, G. Brusa, L. Busoni FLAO system external review, Florence, 30/31 March 2009.
High Contrast Imaging with Focal Plane Wavefront Sensing and PIAA for Subaru Telescopes Olivier Guyon Basile Gallet
1 Characterization of the T/T conditions at Gemini Using AO data Jean-Pierre Véran Lisa Poyneer AO4ELT Conference - Paris June , 2009.
Hubble Space Telescope Coronagraphs John Krist JPL.
First On-sky Test of an Optical Vortex Coronagraph (OVC) Mary Anne Peters Undergraduate research advisor : Laird M. Close Matt Rademacher, Tom Stalcup.
The Active Optics System S. Thomas and the AO team.
Shack-Hartmann tomographic wavefront reconstruction using LGS: Analysis of spot elongation and fratricide effect Clélia Robert 1, Jean-Marc Conan 1, Damien.
Phase retrieval in the focal plane
Experimental results of tomographic reconstruction on ONERA laboratory WFAO bench A. Costille*, C. Petit*, J.-M. Conan*, T. Fusco*, C. Kulcsár**, H.-F.
SNAP Calibration Program Steps to Spectrophotometric Calibration The SNAP (Supernova / Acceleration Probe) mission’s primary science.
Presenter: Alexander Rodack Mentor: Dr. Olivier Guyon Colleagues and Advisors: Dr. Johanan Codona, Kelsey Miller, Justin Knight Project Funded by NASA.
Optical principles of diffraction focussing, Preparing the way to space borne Fresnel imagers NiceSeptember 23-25, Fresnel Imagers Observatoire.
Simulations in the context of SPHERE Exoplanet Imaging Workshop David Mouillet Lecture 27 Feb 2012 Numerous contributors in the simulation work for SPHERE:
Page 1 Adaptive Optics in the VLT and ELT era Wavefront sensors, correctors François Wildi Observatoire de Genève.
Osservatorio Astronomico di Padova A study of Pyramid WFS behavior under imperfect illumination Valentina Viotto Demetrio Magrin Maria Bergomi Marco Dima.
On the Evaluation of Optical Performace of Observing Instruments Y. Suematsu (National Astronomical Observatory of Japan) ABSTRACT: It is useful to represent.
The Self-Coherent Camera: a focal plane wavefront sensor for EPICS
Comète axe 2 - TC1 : RSA n°2 - SPART/S t Cloud Workshop Leiden 2005 Performance of wave-front measurement concepts for GLAO M. NICOLLE 1, T. FUSCO.
Fundamentals of adaptive optics and wavefront reconstruction Marcos van Dam Institute for Geophysics and Planetary Physics, Lawrence Livermore National.
AO4ELT, Paris A Split LGS/NGS Atmospheric Tomography for MCAO and MOAO on ELTs Luc Gilles and Brent Ellerbroek Thirty Meter Telescope Observatory.
Development of Coronagraphs for Exoplanet Detection with SPHERE - direct detection and characterization of Extrasolar Giant Planets in the NIR among nearby.
Charts for TPF-C workshop SNR for Nulling Coronagraph and Post Coron WFS M. Shao 9/28/06.
The High Contrast Performance Of An Optical Vortex Coronagraph By Dr. David M. Palacios Jet Propulsion Laboratory California Institute of Technology.
C n 2 profile reconstruction with Shack-Hartmann slope and scintillation data: first on-sky results J. Voyez (1), C. Robert (1), J.-M. Conan (1), V. Michau.
Page 1 Lecture 16 Extreme Adaptive Optics: Exoplanets and Protoplanetary Disks Claire Max AY 289 March 7, 2016 Based in part on slides from Bruce Macintosh.
Smart co-phasing system for segmented mirror telescopes SPIE: Juan F Simar* a, Yvan Stockman a, Jean Surdej b a Centre Spatial de Liège, LIEGE.
Lecture 14 AO System Optimization
Focal Plane Instrumentation at Big Bear Solar Observatory
Terrestrial Planet Finder - Coronagraph
Pyramid sensors for AO and co-phasing
SPHERE – SAXO Performance status
Topic report Laser beam quality
M. Beaulieu, L. Abe, P. Martinez, P. Baudoz C. Gouvret
Adaptive optics Now: Soon: High angular resolution
He Sun Advisor: N. Jeremy Kasdin Mechanical and Aerospace Engineering
Modern Observational/Instrumentation Techniques Astronomy 500
A Preliminary Trade Study of Hybrid Lyot Coronagraphs for LUVOIR
Calibration Plan Chris Neyman W. M. Keck Observatory April 20, 2010.
Presentation transcript:

1 High-order coronagraphic phase diversity: demonstration of COFFEE on SPHERE. B.Paul 1,2, J-F Sauvage 1, L. Mugnier 1, K. Dohlen 2, D. Mouillet 3, T. Fusco 1,2, J.-L. Beuzit 3, M. Ferrari 2, M. N’Diaye 4 1 Onera, DOTA/HRA 2 Laboratoire d’Astrophysique de Marseille 3 Institut de Planétologie et d'Astrophysique de Grenoble 4 Space Telescope Science Institute 1

Outline  Context: high-contrast imaging  Principle of COFFEE  COFFEE's optimization & performance evaluation  Application to the SPHERE instrument 2

Context: XAO for high-contrast imaging High contrast needs for exoplanet imaging  Today:  Angular separations from 0.1 to arcsec (a few /D to 100 /D)  Contrast up to  Observation made from the ground (turbulence)  Tomorrow:  Angular separations below 0.1 arcsec  Contrast up to (Earth like planets)  Ground / space observations 3 Limitation: Light residuals in final focal plane created by quasi-static aberrations (Non Common Path Aberrations) Solution : focal plane wavefront sensing with the scientific detector

4 Upstream aberrations ( ϕ u ) i( ϕ u, ϕ d ) i( ϕ u + ϕ div, ϕ d ) Diversity phase ( ϕ div ) COFFEE : phase diversity using coronagraphic images (1/2) Coronagraphic imaging system  Coronagraphic focal plane mask  Downstream aberrations ( ϕ d ) + One image: not enough data Two images: OK Image formation model Coronagraphic phase diversity:  Uses only two images to estimate the aberrations upstream of the coronagraph  Rely on a coronagraphic image formation model: i c ( ϕ u, ϕ d ) = Model( ϕ u, ϕ d ) Pupil plane Detector

COFFEE : phase diversity using coronagraphic images (2/2) COFFEE: COronagraphic Focal-plane wave-Front Estimator for Exoplanet detection Estimation of aberrations upstream ( ϕ u ) and downstream ( ϕ d ) of the coronagraph by criterion J minimization « Maximum Likelihood »: Distance experimental images / computed images Regularization metrics: A priori information on the parameters J.-F. Sauvage, L. Mugnier, B. Paul et R. Villecroze, Coronagraphic phase diversity: a simple focal plane sensor for high-contrast imaging, Optics Letter, Dec Definition of a maximum a posteriori criterion:

Aberration estimation: pixel map Estimation of high-order aberration Reduction of the aliasing error Aberration estimation: Zernike modes  Estimation of low-order aberrations only  Strong aliasing error Model : electric field propagation No model mismatch Can be adapted to any coronagraphic focal plane mask M (ALC, FQPM, VPM…) COFFEE's optimization (1/3)  Adaptation to any coronagraphic device 6  Estimation of high-order aberrations Model : perfect coronagraph model  Model mismatch  Application to the apodized Roddier & Roddier coronagraph only 100 parameters > parameters SPIE 2012 AO4ELT B. Paul, J.-F. Sauvage et L. M. Mugnier, Coronagraphic phase diversity: performance study and laboratory demonstration, A&A, April 2013

COFFEE's optimization (2/3) : performance evaluation Aberration estimation: simulation  Coronagraph: ALC (4,52 λ/D); Lyot Stop = 100%  WFE up = 50 nm ; WFE down = 20 nm (λ = 1589 nm, monochromatic images)  Incoming flux: 1e9 photons ; detector noise: σ e- = 1 e-; photon noise  No residual turbulence  up i foc i div ε rec = 1.71 nm RMS Simulation Estimation Image computation  up COFFEE: aberration estimation Image computation

Pseudo-closed loop: simulation  Coronagraph: ALC; Lyot Stop = 96%  WFE up = 50 nm ; WFE down = 20 nm (λ = 1589 nm, monochromatic images)  DM: 41x41 actuators  Incoming flux: 1e9 photons ; detector noise: σ e- = 1 e-; photon noise  No residual turbulence No compensation After NCPA compensation 8 COFFEE’s optimization(3/3) : NCPA compensation No compensation After NCPA compensation Contrast

COFFEE : validation on SPHERE (1/5) Coronagraph : ALC (d M = 4.5 λ/D) Coronagraphic images : IRDIS Diversity phase : AO loop COFFEE : 9 Dead actuator 9 COFFEE Rec. images Calibration Point-Source, H band XAO system, 41 act, 1200Hz IRDIS imager, H2 band, ALC Stop Coronagraph ALC (incl. Apodizer) Exp. images

Defocus Astigmatism IRDIS Coronagraphic image computed by COFFEE Estimated aberration 10 COFFEE : validation on SPHERE (2/5) Low order aberration estimation : Zernike modes  Wavelength : 1589 nm  Coronagraph : APO1 / ALC2  Lyot Stop : Stop ALC (96% entrance pupil + 15% central obstruction) 10

11 High order aberration estimation : poke  Wavelength : 1589 nm  Coronagraph : APO1 / ALC2  Lyot Stop : Stop ALC (96% entrance pupil + 15% central obstruction) COFFEE : validation on SPHERE (3/5) Introduced poke Estimated poke

12 COFFEE : validation on SPHERE (4/5) Pseudo – closed loop process Closed loop on initial reference slopes Acquisition of two images i foc, i div Measurment of  u and  d COFFEE From  u, computation off correction slopes Modification of reference slopes  Wavelength : 1589 nm  Coronagraph : apodized Lyot coronagraph (d M = 4.5 λ/D)  Lyot Stop : Stop ALC (96% entrance pupil + 15% central obstruction)  Gain = 0.5

COFFEE : validation on SPHERE (5/5) First validation of the compensation process: 13 No compensation After NCPA compensation (5 iterations) Energy decrease Contrast : gain x2 – x5 Energy increase Contrast

 COFFEE’s optimization:  Estimation of a pixel-wise map  New imaging model: Adaptation to any coronagraphic mask M  Application to SPHERE :  Estimation of introduced aberration  First experimental validation of the compensation process Conclusion & Perspectives 14 COFFEE : application of the phase diversity to coronagraphic images Perspectives  COFFEE: full validation of iterative process on SPHERE  Combination with ZELDA for a SPHERE upgrade (K. Dohlen talk, Thu. 14h)  Ultimate extinction Creation of a dark hole on the detector Impact of a segmented mirror => refined cophasing

15 …. Thanks for your attention !