Presentation is loading. Please wait.

Presentation is loading. Please wait.

M. Beaulieu, L. Abe, P. Martinez, P. Baudoz C. Gouvret

Similar presentations


Presentation on theme: "M. Beaulieu, L. Abe, P. Martinez, P. Baudoz C. Gouvret"— Presentation transcript:

1 M. Beaulieu, L. Abe, P. Martinez, P. Baudoz C. Gouvret
High-contrast imaging at small separation impact of optical configuration on wavefront shaping performances M. Beaulieu, L. Abe, P. Martinez, P. Baudoz C. Gouvret

2 Methodology : Guyon et al, AAS, 2013
Context SPEED project Detection & characterization of exoplanet in M-dwarf HZ Methodology : Guyon et al, AAS, 2013  ELTs, 1 λ/D (Vortex / PIAACMC), Wavefront shaping

3 Wavefront shaping & Fresnel propagation
Talbot effect Phase only Amplitude only zT/8 zT/4 zT  Use 2 DMs Several frequencies/optics  end-to-end simulation

4 Goal Study Fresnel propagation effect on performances
Determine limitations when changing the optical configuration Define optimum DMs locations Develop end-to-end simulation tool High-contrast imaging (general) simulation (SPEED) Define SPEED setup

5 Implementation  Adjust Criteria Baseline setup
~ 25 optics Perfect coronagraph : removes all light w/o aberrations 2 DMs ~1000 actuators Adjust Distances, optical architecture Random phase (PSD f-α, rms) Number of random phase realizations (128) Numerical implementation Dark hole computation : energy minimization (linear transformation, small phases, perfect coronagraph) Code : PROPER / IDL / C++ (data center, 3024 cores shared with users) Criteria 5σ contrast ratio inside the dark hole

6 Phase number realization
Numerical results 128 phase realizations, Phase number realization

7 Goal Study Fresnel propagation effect on performances
Determine limitations when changing the optical configuration Define optimum DMs locations Develop end-to-end simulation tool High-contrast imaging (general) simulation (SPEED) Define SPEED DMs locations End-to-end simulation Analytical approach

8 End-to-end simulation : results 1/2
DM1 at pupil plane Optimum ~ 2 m 7

9 End-to-end simulation : results 2/2
Beaulieu et al, MNRAS, 2017

10 End-to-end simulation : results 2/2
Beaulieu et al, MNRAS, 2017

11 SPEED setup Beaulieu et al, MNRAS, 2017

12 Analytical approach 1/2 Impact of 1 out-of-pupil plane DM
Approximation : simple setup z pupil DM Ef Modulation depends on DM location z Focal plane coordinates x and y (dark hole coordinates)

13 Analytical approach 2/2 Efficiency

14 Discussion 1/2 Analytical optimum distance: 0.8 à 4 λ/D

15 Discussion 2/2 Analytical optimum distance: 4 à 10 λ/D

16 Laboratory test Simple testbed to validate simulation results, acquire know-how on wavefront shaping implementation Coronagraph easy to implement Binary coronagraphic mask (checkerboard) 4 coronagraphic zones between 6 and 16 λ/D 2 DMs Simple testbed : few optics

17 Conclusion End-to-end simulation tool developed @ Lagrange
Collaboration LESIA Study Fresnel propagation effect Define optimum DM distance Application to SPEED Require large small separation Can be analytically estimated On-going lab test to validate results Take into account pupil discontinuities (gaps, spiders…) Predict SPEED performances (implement PIAACMC, measured aberration)


Download ppt "M. Beaulieu, L. Abe, P. Martinez, P. Baudoz C. Gouvret"

Similar presentations


Ads by Google