Estimating Ecosystem Model Uncertainties in Pan-Regional Syntheses and Climate Change Impacts on Coastal Domains of the North Pacific Ocean Jerome Fiechter.

Slides:



Advertisements
Similar presentations
Bayesian Hierarchical Models Selected Approaches Geophysical Examples
Advertisements

Probabilistic models Jouni Tuomisto THL. Outline Deterministic models with probabilistic parameters Hierarchical Bayesian models Bayesian belief nets.
Jerome Fiechter, Andy Moore, Gregoire Broquet Ocean Sciences Department University of California, Santa Cruz ROMS Workshop, Sydney, April 2009 Improving.
Bayesian Estimation in MARK
Bayesian calibration and comparison of process-based forest models Marcel van Oijen & Ron Smith (CEH-Edinburgh) Jonathan Rougier (Durham Univ.)
Inspiral Parameter Estimation via Markov Chain Monte Carlo (MCMC) Methods Nelson Christensen Carleton College LIGO-G Z.
By Addison Euhus, Guidance by Edward Phillips An Introduction To Uncertainty Quantification.
Ocean Ecosystem Model Parameter Estimation in a Bayesian Hierarchical Model (BHM) Ralph F. Milliff; CIRES, University of Colorado Jerome Fiechter, Ocean.
Part 24: Bayesian Estimation 24-1/35 Econometrics I Professor William Greene Stern School of Business Department of Economics.
Markov-Chain Monte Carlo
A Simple Approach to Modeling Iron Limitation of Primary Production in the Gulf of Alaska A Simple Approach to Modeling Iron Limitation of Primary Production.
Dale Haidvogel Institute of Marine and Coastal Sciences Coupled Basin- to Regional-Scale Ocean Modeling as Developed in the U.S. GLOBEC Program Dale Haidvogel.
Dale Haidvogel Institute of Marine and Coastal Sciences Putting the “Globe” into U.S. GLOBEC New Models and Methods in Support of Integrated Climate Research.
CHAPTER 16 MARKOV CHAIN MONTE CARLO
BAYESIAN INFERENCE Sampling techniques
Computing the Posterior Probability The posterior probability distribution contains the complete information concerning the parameters, but need often.
Hidden Markov Model 11/28/07. Bayes Rule The posterior distribution Select k with the largest posterior distribution. Minimizes the average misclassification.
CENTER FOR BIOLOGICAL SEQUENCE ANALYSIS Bayesian Inference Anders Gorm Pedersen Molecular Evolution Group Center for Biological Sequence Analysis Technical.
Course overview Tuesday lecture –Those not presenting turn in short review of a paper using the method being discussed Thursday computer lab –Turn in short.
GOES-R 3 : Coastal CO 2 fluxes Pete Strutton, Burke Hales & Ricardo Letelier College of Oceanic and Atmospheric Sciences Oregon State University 1. The.
Today Introduction to MCMC Particle filters and MCMC
1 Transforming the efficiency of Partial EVSI computation Alan Brennan Health Economics and Decision Science (HEDS) Samer Kharroubi Centre for Bayesian.
CENTER FOR BIOLOGICAL SEQUENCE ANALYSIS Bayesian Inference Anders Gorm Pedersen Molecular Evolution Group Center for Biological Sequence Analysis Technical.
Experimental System for Predicting Shelf-Slope Optics (ESPreSSO): Assimilating ocean color data using an iterative ensemble smoother: skill assessment.
Providing distributed forecasts of precipitation using a Bayesian nowcast scheme Neil I. Fox & Chris K. Wikle University of Missouri - Columbia.
An Adjoint Sensitivity Analysis of the Southern California Current Circulation and Ecosystem Andy Moore, Emanuele DiLorenzo, Hernan Arango, Craig Lewis,
Using ranking and DCE data to value health states on the QALY scale using conventional and Bayesian methods Theresa Cain.
Bayesian Analysis for Extreme Events Pao-Shin Chu and Xin Zhao Department of Meteorology School of Ocean & Earth Science & Technology University of Hawaii-
Robin McDougall, Ed Waller and Scott Nokleby Faculties of Engineering & Applied Science and Energy Systems & Nuclear Science 1.
7. Bayesian phylogenetic analysis using MrBAYES UST Jeong Dageum Thomas Bayes( ) The Phylogenetic Handbook – Section III, Phylogenetic.
US GLOBEC Fundamental Discoveries and Surprises David Mountain.
Bayesian parameter estimation in cosmology with Population Monte Carlo By Darell Moodley (UKZN) Supervisor: Prof. K Moodley (UKZN) SKA Postgraduate conference,
Model Inference and Averaging
Introduction to MCMC and BUGS. Computational problems More parameters -> even more parameter combinations Exact computation and grid approximation become.
Prince William Sound Resurrection Bay Knight Island Passage Middleton Island The physical model is run in three dimensions and the data are used to drive.
Applied Bayesian Inference, KSU, April 29, 2012 § ❷ / §❷ An Introduction to Bayesian inference Robert J. Tempelman 1.
Bayesian Inversion of Stokes Profiles A.Asensio Ramos (IAC) M. J. Martínez González (LERMA) J. A. Rubiño Martín (IAC) Beaulieu Workshop ( Beaulieu sur.
Mixture Models, Monte Carlo, Bayesian Updating and Dynamic Models Mike West Computing Science and Statistics, Vol. 24, pp , 1993.
Conclusions The quantitative dynamical fitting procedure has been tested successfully for CalCOFI hydrographic data by adjusting temperature and salinity.
Spatio-Temporal Surface Vector Wind Retrieval Error Models Ralph F. Milliff NWRA/CoRA Lucrezia Ricciardulli Remote Sensing Systems Deborah K. Smith Remote.
Why it is good to be uncertain ? Martin Wattenbach, Pia Gottschalk, Markus Reichstein, Dario Papale, Jagadeesh Yeluripati, Astley Hastings, Marcel van.
ROMS 4D-Var: The Complete Story Andy Moore Ocean Sciences Department University of California Santa Cruz & Hernan Arango IMCS, Rutgers University.
Suppressing Random Walks in Markov Chain Monte Carlo Using Ordered Overrelaxation Radford M. Neal 발표자 : 장 정 호.
Modeling the biological response to the eddy-resolved circulation in the California Current Arthur J. Miller SIO, La Jolla, CA John R. Moisan NASA.
Observing Systems for Multiscale Processes: Connectivity across Scales, How to design observing systems, Sampling program.
3rd International Workshop on Dark Matter, Dark Energy and Matter-Antimatter Asymmetry NTHU & NTU, Dec 27—31, 2012 Likelihood of the Matter Power Spectrum.
MCMC reconstruction of the 2 HE cascade events Dmitry Chirkin, UW Madison.
Probabilistic models Jouni Tuomisto THL. Outline Deterministic models with probabilistic parameters Hierarchical Bayesian models Bayesian belief nets.
Markov Chain Monte Carlo for LDA C. Andrieu, N. D. Freitas, and A. Doucet, An Introduction to MCMC for Machine Learning, R. M. Neal, Probabilistic.
Bayesian Travel Time Reliability
Reducing MCMC Computational Cost With a Two Layered Bayesian Approach
Tutorial I: Missing Value Analysis
Personalized Recommendations using Discrete Choice Models with Inter- and Intra-Consumer Heterogeneity Moshe Ben-Akiva With Felix Becker, Mazen Danaf,
Jerome Fiechter Ocean Sciences Department University of California, Santa Cruz ROMS Workshop, Grenoble, 6-8 October 2008 Seasonal and Interannual Ecosystem.
Anders Nielsen Technical University of Denmark, DTU-Aqua Mark Maunder Inter-American Tropical Tuna Commission An Introduction.
Estimating Uncertainty. Estimating Uncertainty in ADMB Model parameters and derived quantities Normal approximation Profile likelihood Bayesian MCMC Bootstrap.
Hierarchical Models. Conceptual: What are we talking about? – What makes a statistical model hierarchical? – How does that fit into population analysis?
Generalization Performance of Exchange Monte Carlo Method for Normal Mixture Models Kenji Nagata, Sumio Watanabe Tokyo Institute of Technology.
MCMC Output & Metropolis-Hastings Algorithm Part I
Theme 1: Biological uptake and trace element bioavailability
Model Inference and Averaging
Identifying Loci for Ocean Forecast Model Error from
School of Mathematical Sciences, University of Nottingham.
Multidimensional Integration Part I
Econometrics Chengyuan Yin School of Mathematics.
Slides for Sampling from Posterior of Shape
CS639: Data Management for Data Science
Markov Networks.
Yalchin Efendiev Texas A&M University
Classical regression review
Presentation transcript:

Estimating Ecosystem Model Uncertainties in Pan-Regional Syntheses and Climate Change Impacts on Coastal Domains of the North Pacific Ocean Jerome Fiechter Andrew M. Moore Ocean Science, UCSC Thomas M. “Zack” Powell Integrative Biology, Cal Christopher K. Wikle Mevin Hooten Statistics, U. Missouri Utah State Ralph F. Milliff Jeremiah Brown NWRA, CoRA Div. US GLOBEC PIs and Co-Is: Emanuele Di Lorenzo Earth Sci, Ga Tech L. Mark Berliner Statistics, Ohio State William G. Large NCAR, CGD Bernard Megrey NOAA, NMFS Project Advisory Panel: 3 rd US GLOBEC PRS Workshop, Feb 2009, Boulder

1D relocatable BHM; Data Stage Inputs – Regional Obs, Regional ROMS output Process Model Stage – NPZD, NEMURO, Error Models, dynamics Climate Scale Calculations (1D BHM) Data Stage Inputs – Pac Boundary Ecosystem Climate Project (Di Lorenzo et al.) NCAR OGCM, ROMS-Pacific Basin 3D Coastal Domain BHM “Forest” of statistically-linked 1D BHM Conventional 3D Goals: Estimate ocean ecosystem model parameters, and quantify parameter uncertainty for coastal domains spanning the North Pacific Ocean Demonstrate the feasibility and advantages of Bayesian Hierarchical Models (BHM) for large state-space ocean ecosystems Quantify impacts of climate-scale variability on coastal ocean ecosystems Objectives:

Bayesian Estimation Cartoon: Model for Process of Interest: e.g. Phytoplankton Abundance mmolN m -3

Measurement Error Model: e.g. estimates based on fluorometer readings Bayesian Estimation Cartoon:

Posterior Distribution: Prior updated by Observation distribution (normalized) Bayesian Estimation Cartoon: mmolN m -3

Process Model Stage Distribution “Prior”, “(approximate) Balance Eqns”, “Basis Functions”,... 1D and 3D NEMURO+Fe and NPZD+Fe discretizations plus error (test sophisticated error models) Parameter Distributions structured vs. vague some “random”, some “fixed”, model validation tool Posterior Distribution “posterior mean”, “spread quantifies uncertainty” estimate via sampling; e.g. Markov Chain Monte Carlo (MCMC) posterior distributions on parameters Bayes Theorem Data Stage Distribution “Likelihood” “Measurement Error Model” Station obs, transects, satellite obs; i.e. with error estimates ROMS-NEMURO+Fe output with error estimates What is a Bayesian Hierarchical Model (BHM)? Use hierarchies of distributions to facilitate modelling, multi-platform data,...

WPAC CGOA CCS WPAC Data Stage Distribution “Likelihood” “Measurement Error Model” Station obs, transects, satellite obs; i.e. with error estimates ROMS-NEMURO+Fe output with error estimates

Process Model Stage Distribution “Prior”, “(approximate) Balance Eqns”, “Basis Functions”,... 1D and 3D NEMURO+Fe and NPZD+Fe discretizations plus error (test sophisticated error models) Parameter Distributions structured vs. vague some “random”, some “fixed”, model validation tool Posterior Distribution “posterior mean”, “spread quantifies uncertainty” estimate via sampling; e.g. Markov Chain Monte Carlo (MCMC) posterior distributions on parameters Bayes Theorem Data Stage Distribution “Likelihood” “Measurement Error Model” Station obs, transects, satellite obs; i.e. with error estimates ROMS-NEMURO+Fe output with error estimates What is a Bayesian Hierarchical Model (BHM)? Use hierarchies of distributions to facilitate modelling, multi-platform data,...

Process Model Stage Distribution “Prior”, “(approximate) Balance Eqns”, “Basis Functions”,... 1D and 3D NEMURO+Fe and NPZD+Fe discretizations plus error (test sophisticated error models)

Process Model Stage Distribution “Prior”, “(approximate) Balance Eqns”, “Basis Functions”,... 1D and 3D NEMURO+Fe and NPZD+Fe discretizations plus error (test sophisticated error models) Parameter Distributions structured vs. vague some “random”, some “fixed”, model validation tool Posterior Distribution “posterior mean”, “spread quantifies uncertainty” estimate via sampling; e.g. Markov Chain Monte Carlo (MCMC) posterior distributions on parameters Bayes Theorem Data Stage Distribution “Likelihood” “Measurement Error Model” Station obs, transects, satellite obs; i.e. with error estimates ROMS-NEMURO+Fe output with error estimates What is a Bayesian Hierarchical Model (BHM)? Use hierarchies of distributions to facilitate modelling, multi-platform data,...

Parameter Distributions structured vs. vague some “random”, some “fixed”, model validation tool AttSW Vm_NO3 PhyMRD ZooGR ZooMRD DetRR wDet T_Fe FeRR K_NO3 K_FeC Unif (0.04,0.4) Unif (0.2,2.0) Unif (0.02,0.2) Unif (0.1,1.0) Unif (0.02,0.2) Unif (0.1,1.0) Unif (0,50) Unif (1,10) Unif (0.1,1.0) Unif (0.3,3.0) Unif (3,30)

Process Model Stage Distribution “Prior”, “(approximate) Balance Eqns”, “Basis Functions”,... 1D and 3D NEMURO+Fe and NPZD+Fe discretizations plus error (test sophisticated error models) Parameter Distributions structured vs. vague some “random”, some “fixed”, model validation tool Posterior Distribution “posterior mean”, “spread quantifies uncertainty” estimate via sampling; e.g. Markov Chain Monte Carlo (MCMC) posterior distributions on parameters Bayes Theorem Data Stage Distribution “Likelihood” “Measurement Error Model” Station obs, transects, satellite obs; i.e. with error estimates ROMS-NEMURO+Fe output with error estimates What is a Bayesian Hierarchical Model (BHM)? Use hierarchies of distributions to facilitate modelling, multi-platform data,...

Posterior Distribution “posterior mean”, “spread quantifies uncertainty” estimate via sampling; e.g. Markov Chain Monte Carlo (MCMC) posterior distributions on parameters Zooplankton Grazing Rate Posterior Distribution day -1

What do we get from a BHM? Distributions mode is “most likely state”, distribution (“spread”) is uncertainty animations of “posterior mean”, “uncertainty maps”, summary fields parameter posterior distributions are the model parameters “identifiable” given the data? partition uncertainty; i.e. biological components vs. physics Conditional Probabilities diagnose/compare dependencies (i.e. “top-down/bottom-up”, “webs”) multi-platform (disparate) data stages “borrowed support” from well-known distributions to less well-known Model and Array Design identify next “most explanatory” term identify next “most informative” observation

WPAC CGOA CCS ROMS-NPZD+Fe: Sea Surface Height Annual Average New WPAC ROMS-Nemuro+Fe and ROMS-NPZD+Fe implemented by J. Fiechter and A. Moore CCS dynamical model from C. Edwards and M. Veneziani Biology implemented by J. Fiechter CGOA and WPAC physical boundary conditions from N. Pacific ROMS due to JAMSTEC; E. Curchitser and E. Di Lorenzo

CCS ROMS-NPZD-Fe: Surface Chlorophyll Annual Average (sample data stage inputs) CGOA WPAC

SEAWIFS Chlorophyll: 2001 Annual Mean (use comparison with ROMS-NPZD+Fe to estimate error) WPAC CGOA CCS WPAC

Data Stage Input Choices: Compare ROMS-NPZD, ROMS-NEMURO, SeaWIFS

inner shelfmid shelfouter shelf Z max 61.2 m162.4 m915.4 m10 levels dt = 1 d 94 d 88 d 93 d days 1D-NPZD+Fe BHM: Initial Experiments CGOA x,t domain: data stage inputs: NO3, P, Z, D, Fe dissolved, Fe P-assoc, SW rad GLOBEC data: GAK line station data NO3, SiOH4, P_total, P_small, P_large ROMS-NPZD output BHM solution procedure: Markov Chain Monte Carlo (Metropolis Hastings) 22K iterations, 2K burn-in validate with 30K repeat

1D NPZD+Fe BHM: Process Model development 3D NPZD fr Powell Fe limitation fr Fiechter f90 fr ROMS-NPZD+Fe Semi-implicit, 3D»1D Matlab fr Brown BHM by Wikle 1. Random params 2. Random dependent vars 3. Error Models

AttSW Vm_NO3 PhyMRD ZooGR ZooMRD DetRR wDet T_Fe FeRR K_NO3 K_FeC Unif (0.04,0.4) Unif (0.2,2.0) Unif (0.02,0.2) Unif (0.1,1.0) Unif (0.02,0.2) Unif (0.1,1.0) Unif (0,50) Unif (1,10) Unif (0.1,1.0) Unif (0.3,3.0) Unif (3,30) 1D NPZD+Fe BHM: Initial Experiments CGOA Random Parameters and Hyperprior Distributions BHM Params BHM Initial Val BHM Initial Dist

inner shelf mid shelf outer shelf T_Fek_FeCFeRR 1D NPZD+Fe BHM: CGOA Initial Results GLOBEC GAK line data only Fe limitation vs. offshore position

1D NPZD+Fe BHM: CGOA Initial Results GLOBEC GAK line data only Data Influence on Posterior Mean Trace Forward integration of Process Model (no Bayesian estimation) Mean of posterior distribution from 1D NPZD+Fe BHM at one level on inner shelf profile * Observed N concentration at m on GAK line (inner shelf)

BHM for 1D-NPZDFe using data from obs + ROMS Preliminary runs exhibit Bayesian learning and “mixing” BHM to be validated via sequence of 1D calculations: NPZDFe, NPZD, NPZ, NP, N, P Test issues of uniqueness in solutions Summary

Issues Data Stage Process Model Incl. vertical adv. and vertical mixing Identify correlated parameters Fixed vs. random parameters Data volume Data importance (uncertainty) Data timing

EXTRAS

1D NPZD+Fe BHM: CGOA Initial Results ROMS-NPZD+Fe data only Fe limitation vs. offshore position inner shelf mid shelf outer shelf T_Fek_FeCFeRR

1D NPZD+Fe BHM: CGOA Initial Results GLOBEC GAK line data only Vm_NO3 convergence vs. offshore position inner shelf mid shelf outer shelf Vm_NO3MCMC iteration trace 22K iterations Phytoplankton Nitrate Uptake Rate

inner shelf mid shelf outer shelf Vm_NO3MCMC iteration trace 22K iterations Phytoplankton Nitrate Uptake Rate 1D NPZD+Fe BHM: CGOA Initial Results ROMS-NPZD+Fe data only Vm_NO3 convergence vs. offshore position