Flat Radio Sources. Almost every galaxy hosts a BH 99% are silent 1% are active 0.1% have jets.

Slides:



Advertisements
Similar presentations
Extragalactic jets: a new perspective
Advertisements

Fermi rules out EC/CMB as the X-ray emission mechanism for 3C 273 Markos Georganopoulos 1,2 Eileen T. Meyer 3 1 University of Maryland, Baltimore County.
The disc-jet-spin connection: 3C273 Chris Done Charles Finn, Emma Gardner… University of Durham.
Almost every galaxy hosts a BH 99% are silent 1% are active 0.1% have jets Extragalactic jets: a new perspective G. Ghisellini in coll. with F. Tavecchio.
AY202a Galaxies & Dynamics Lecture 14: Galaxy Centers & Active Galactic Nuclei.
Tom Esposito Astr Feb 09. Seyfert 1, Seyfert 2, QSO, QSO2, LINER, FR I, FR II, Quasars, Blazars, NLXG, BALQ…
Tadayuki Takahashi Institute of Space and Astronautical Science (ISAS) Spectral and Temporal Variations of Blazars Hidetoshi Kubo(Kyoto), Jun Kataoka (Tokyo.
Determining the location of the GeV emitting zone in fast, bright blazars Amanda Dotson, UMBC Markos Georganopoulos (advisor), UMBC/GSFC Eileen Meyer,
Modeling the SED and variability of 3C66A in 2003/2004 Presented By Manasvita Joshi Ohio University, Athens, OH ISCRA, Erice, Italy 2006.
1/26 Introduction 1/28 Radio Loud AGN Unification: Connecting Jets and Accretion Eileen Meyer Space Telescope Science Institute Giovanni Fossati, Rice.
The Accretion Mode - Morphology Link in Radio-Loud AGN jets: Towards a More Complete Unification Scheme Eileen Meyer Rice University University of Maryland,
Gamma-Rays and Blazars More Work for Variable Star Observers Gordon G. Spear Sonoma State University.
Upper Limit on the Cosmological  - Ray Background Yoshiyuki Inoue (Stanford) Kunihito Ioka (KEK) 1.
Moriond 04/02/09Benoit Lott New insight into Gamma-ray Blazars from the Fermi-LAT Benoît Lott CEN Bordeaux-Gradignan on behalf of the Fermi-LAT collaboration.
TeV blazars and their distance E. Prandini, Padova University & INFN G. Bonnoli, L. Maraschi, M. Mariotti and F. Tavecchio Cosmic Radiation Fields - Sources.
Active Galactic Nuclei Very small angular size: point like High luminosity: compared to host galaxies Broad-band continuum emission: radio to TeV Strong.
Markus B ӧ ttcher Ohio University Athens, OH VHE Gamma-Ray Induced Pair Cascades in Blazars and Radio Galaxies.
July 4, 2006 P. Padovani, Unidentified  -ray Sources 1 The Blazar Sequence: Validity and Predictions Paolo Padovani (ESO) Blazar properties The Blazar.
H.E.S.S. observations of AGN “probing extreme environments with extreme radiation” Anthony Brown National Astronomy Meeting, 2006 H.E.S.S. = High Energy.
Models for non-HBL VHE Gamma-Ray Blazars Markus Böttcher Ohio University, Athens, OH, USA “TeV Particle Astrophysics” SLAC, Menlo Park, CA, July 13 – 17,
Numerical Modeling of Electromagnetic Radiation from AGN Jets Based on  -ray emission and spectral evolution of pair plasmas in AGN jets Bottcher et al.
Theory of TeV AGNs (Buckley, Science, 1998) Amir Levinson, Tel Aviv University.
Multi-wavelength AGN spectra and modeling Paolo Giommi ASI.
AGN (Continued): Radio properties of AGN I) Basic features of radio morphology II) Observed phenomena Superluminal motion III) Unification schemes.
Gamma-ray Astronomy of XXI Century 100 MeV – 10 TeV.
The Origin of the Extragalactic Background Light: Constraints from High Energy Gamma-Ray Observations ? P. Coppi Yale University.
Studying emission mechanisms of AGN Dr. Karsten Berger Fermi School, June ©NASA.
Blazars and Neutrinos C. Dermer (Naval Research Laboratory) Collaborators: A. M. Atoyan (Universite de Montreal) M. Böttcher (Rice University) R. Schlickeiser.
High energy Astrophysics Mat Page Mullard Space Science Lab, UCL 6. Jets and radio emission.
Leptonic and Hadronic Modeling of Gamma-Ray Blazars Markus Böttcher and Anita Reimer North-West University Universit ӓ t Innsbruck Potchefstroom, Innsbruck.
Leptonic and Hadronic Models for the Spectral Energy Distributions and High- Energy Polarization of Blazars Markus Böttcher North-West University Potchefstroom.
STATISTICAL ACCELERATION and SPECTRAL ENERGY DISTRIBUTION in BLAZARS Enrico Massaro Physics Department, Spienza Univ. of Roma and Andrea Tramacere ISOC,
Minimum e Lorentz factor and matter content of jet in blazars Qingwen Wu Huazhong University of Science and Technology, China S.-J. Kang & L. Chen Collaborators:
Quasar large scale jets: Fast and powerful or weak and slow, but efficient accelerators? Markos Georganopoulos 1,2 1 University of Maryland, Baltimore.
1 Juri Poutanen University of Oulu, Finland (Stern, Poutanen, 2006, MNRAS, 372, 1217; Stern, Poutanen, 2007, MNRAS, submitted, astro- ph/ ) A new.
Multiwavelength observations of the gamma-ray blazars detected by AGILE Filippo D’Ammando INAF - Istituto di Astrofisica Spaziale e Fisica Cosmica Roma.
Determining the location of the GeV emitting zone in fast, bright blazars Amanda Dotson, UMBC Markos Georganopoulous, UMBC/GSFC Eileen Meyer, STScI MARLAM.
Acceleration and Energy Transport in the AGN jets: from sub-pc to kpc scale Jun Kataoka Tokyo Institute of Technology - Acceleration site in the universe.
Radio galaxy Elliptical Fanaroff-Riley type I “Misaligned” BL Lac (~ 60  ) Distance 3.5 Mpc Parameter Value  (J2000) 201   (J2000) -43 
Broadband Properties of Blazars
BL LAC OBJECTS Marco Bondi INAF-IRA, Bologna, Italy.
We fit the high-state data to a model with three free parameters: the normalizations of the three radiation components. The figure below shows the fit.
Il (tl) = Il (0) e-t(l) + Bl(T) (1 – e-t(l))
Modeling the Emission Processes in Blazars Markus Böttcher Ohio University Athens, OH.
Galaxies with Active Nuclei Chapter 14:. Active Galaxies Galaxies with extremely violent energy release in their nuclei (pl. of nucleus).  “active galactic.
ICRR 17/9/2001 Gamma-ray emission from AGN Qinghuan Luo School of Physics, University of Sydney.
Blazars: the gamma-ray view of AGILE on behalf of the AGILE WG-AGN Filippo D’Ammando Università degli Studi di Roma “Tor Vergata” INAF - Istituto di Astrofisica.
The hard X-ray Extra-Galactic sky with INTEGRAL/IBIS High-z QSOs A.De Rosa on behalf of the INTEGRAL/AGN survey team.
VHE  -ray Emission From Nearby FR I Radio Galaxies M. Ostrowski 1 & L. Stawarz 1,2 1 Astronomical Observatory, Jagiellonian University 2 Landessternwarte.
Jets at different scales and the connection with accretion L. Maraschi and F.Tavecchio INAF - Osservatorio Astronomico di Brera.
Multi - emission from large-scale jets Fabrizio Tavecchio INAF – Osservatorio Astronomico di Brera.
Modeling the SED and variability of 3C66A in Authors: Manasvita Joshi and Markus Böttcher (Ohio University) Abstract: An extensive multi-wavelength.
Anita Reimer, HEPL/Stanford University GLAST-lunch talk, 23 February 2006 On the diffuse AGN contribution to the extragalactic  -ray background (EGRB)
The non-thermal broadband spectral energy distribution of radio galaxies Gustavo E. Romero Instituto Argentino de Radio Astronomía (IAR-CCT La Plata CONICET)
Active Galaxies Galaxies with extremely violent energy release in their nuclei (pl. of nucleus). → “Active Galactic Nuclei” (= AGN) Up to many thousand.
Multi-wavelength emission models in blazars Gabriele Ghisellini INAF-Osservatorio di Brera with A. Celotti, R. Della Ceca, L. Foschini, G. Ghirlanda, F.
MAGIC Max Planck Institut fürPhzsik The MAGIC Telescope ShangYu Sun A. Boller, L. Fortson, N. Galante, D. Paneque and B. Steinke On behalf of the Fermi,
Implications of VHE Emission in Gamma-Ray AGN Amir Levinson, Tel Aviv University.
Tobias Jogler Max-Planck Institut für Physik IMPRS YSW Ringberg 2007 VHE emission from binary systems Outline Binary systems Microquasar Pulsar binaries.
Radio Loud and Radio Quiet AGN
Gamma Rays from the Radio Galaxy M87
Observation of Pulsars and Plerions with MAGIC
Broadband Properties of Blazars
Lecture 5 Multi-wavelength cosmic background
Radio Galaxies Part 5.
Active Galactic Nuclei (AGN)
How to classify a Gamma -ray source as a Blazar
X-Ray Binaries as Gamma-Ray Sources
Lecture 7: Jets on all scales Superluminal apparent motions.
Properties of Blazars The “blazar sequence” BL Lacs FSRQs
Presentation transcript:

Flat Radio Sources

Almost every galaxy hosts a BH 99% are silent 1% are active 0.1% have jets

Radio lobes No lobes Powerful FRII radio-galaxy Weak FRI radio-galaxy Broad emission lines No or weak lines emission lines

Radio-galaxies & Blazars FSRQs= Flat Spectrum Radio Quasars, with broad lines BL Lacs= less powerful, no broad lines FR II poweful radio galaxy, with lobes FR I: weak radio galaxy, no lobes R s

Radio VLBIOptical HST Superluminal motion

Blazars: phenomenology

Synchro Inverse Compton (also possible hadronic models) Radio IR Opt UV X MeV GeV Blazars: Spectral Energy Distribution

Fossati et al. 1998; Donato et al The “blazar sequence” FSRQs BL Lacs LBL and HBL AGILE GLAST CT

Gamma-ray blazars Fermi HESS+ MAGIC EGRET: ~100 blazars Cherenkov: ~40 blazars (a few Radiogal) The Universe becomes opaque at z~0.1 at 1TeV at z~2 at 20 GeV

9 years of EGRET ( GeV) After 11 months: ~700 (blazars, FSRQsand BL Lacs in equal number) A few radiogalaxies 4 NLSy1 Starburst galaxies Fermi first light, 96 hrs of integration

Blazars: emission models

Coordinated variability at different Coordinated variability at different Mkn 421 TeV PDS MECS LECS

BL Lacs: low power, no lines

Tagliaferri et al. + MAGIC, 2008 TeV BL Lacs Ferm i 1 yr 5 

 ADAF? L< L Edd ?  No BLR No IR Torus Weak cooling Large 

Emission Models SSC model Simplest scenario: SSC model No external radiation

The simplest model   R Log  Log N(  )   n1 bb Log Log L( )   2 s B e   n2

The simplest model Log  Log N(  ) n1n1 n2n2 bb Log U syn ( ) + Log 11  ’ s Log Log L( )  22 s  22 C

The simplest model Log  Log N(  ) n1n1 n2n2 bb + “Klein-Nishina regime” h ’ s  b >m e c 2 Log L( ) Log  22 s   KN C Log Log U syn ( ) 11  ’ s

SSC model: constraining the parameters In the simplest version of the SSC model, all the parameters can be constrained by quantities available from observations: Model parameters: R B N o  b n 1 n 2  Observational parameters: s L s C L C t var  1  2 7 free parameters 7 observational quantities Tavecchio et al. 1998

K K2K2

   

FSQRs: high power, strong broad emission lines

SX 10 4 s Data: Fabian+ 2001

Torus ~1-10 pc BLR ~0.2 pc R BLR ~ L disk  U BLR = const 1/ 2 R Torus ~ L disk  U IR = const 1/ 2 L B ~ B 2 R 2  2 c = const  B~1/(R  )

Torus ~1-10 pc ? ? BLR ~0.2 pc

Importance of  -rays If blob too close to disk, or too compact, AND if emits  -rays, then many pairs If blob too large (too distant) t var too long Then: R diss ~ 1000 R S Energy transport in inner jet must be dissipationless

 b = 10 3  max = 10 4 R diss = 20R s  = 10 torus disk corona

The simplest model - 5 Log  Log N(  ) n1n1 n2n2 bb + Log Log U ext ( ) Broad line region, Disk o ’ o   Log Log F( )  22 s  22 C

B =  =  b = Ballo et al C 279 EC + SSC The simplest model - 6

Torus ~8 pc BLR ~0.3 pc CMB A text-book jet B propto 1/R n propto 1/R 2 M=10 9 M o L disk ~L Edd z=3

pc SX 10 5 s

2 2 1 pc

pc

pc

5 5 1 kpc

kpc

kpc

kpc 1 kpc 100 pc 10 pc 1 pc 0.1 pc 0 SX 10 5 s

kpc 1 kpc 100 pc 10 pc 1 pc 0.1 pc 0 SX 10 5 s Peak at ~ keV Hard X-rays and GeV: same component (t var ~0.5-1 day) Soft X-rays: contributions from larger regions, but within 10 pc (t var <2.5 months) 100 kpc

Fossati et al. 1998; Donato et al. 2001

By modeling, we find physical parameters in the comoving frame.  peak is the energy of electrons emitting at the peak of the SED EGRET blazars Ghisellini et al. 1998

Low power slow cooling large  peak Big power fast cooling small  peak

 -ray emission from non-blazar AGNs Only one non–blazar AGNs is known at VHE band: the radiogalaxy M87

Emission region? Large scale jet Stawarz et al Knot HST-1 (60 pc proj.) Stawarz et al Cheung et al Misaligned (20 deg) blazar Georganopoulos et al Lenain et al FT and GG 2008 BH horizon Neronov & Aharonian 2007 Rieger & Aharonian 2008

Core? Acciari et al. 2008

Ghisellini Tavecchio Chiaberge 2005 Tavecchio & Ghisellini 2008 spine layer

More seed photons for both   rel =  layer  spine (1-  layer  spine )  The spine sees an enhanced U rad coming from the layer  Also the layer sees an enhanced U rad coming from the spine The IC emission is enhanced wrt to the standard SSC model

BL Lac Radiogalaxy

Misaligned structured blazar jet FT and GG 2008

The End

Evidences for relativistic beaming Superluminal motions Level of Compton emission High brightness temperatures Gamma-ray emission/absorption (see below)

Radiogalaxy (FRI, FRII), SSRQ Blazar (BL Lac [no BL], FSRQ [BL] ) BH Broad Line Region Narrow Line Region Urry & Padovani 1995 “Unification scheme” Accretion flow/disk (T~1e4 K) Obscuring torus (hot dust) Blazar characteristics: - Compact radio core, flat or inverted spectrum - Extreme variability (amplitude and t) at all frequencies - High optical and radio polarization FSRQsbright broad ( km/s) emission lines FSRQs: bright broad ( km/s) emission lines often evidences for the “blue bump” (acc. disc) often evidences for the “blue bump” (acc. disc) BL Lacertae: weak (EW<5 Å) emission lines no signatures of accretion no signatures of accretion

The radio-loud zoo is large and complex Messy classification! FRI, FRII, NLRG, BLRG, FSRQ, OVV, HPQ, BL Lac objects … Idea: Jet emission is anisotropic (beaming): viewing angle + intrinsic jet (and AGN) power

Almost all galaxies contain a massive black hole 99% of them is (almost) silent (e.g. our Galaxy) 1% per cent is active (mostly radio-quiet AGNs): BH+accretion flow (disk): most of the emission in the UV-X-ray band 0.1% is radio loud: jets mostly visible in the radio e.g. Ferrarese & Ford 2004

FRII source: Cygnus A

FRI source: 3C31

VHE emission of M87 Light curve Spectrum t var ~ 2 days !

New problems: Ultra-rapid variability Aharonian et al H.E.S.S. Albert et al MAGIC Mkn 501 PKS

Observed time: (R 0 /c)  2 (1-  cos  ) ~ R 0 /c ! Rees 1978 for M87

t var =200 s In the standard scenario t var >r g /c = 1.4 M 9 h ! Conclusion: only a small portion of the jet (and/or BH horizon) is involved in the emission (e.g. Begelman, Fabian & Rees 2008)

Possible alternative: VHE emission from a fast, transient “needle” (Ghisellini & Tavecchio 2008) VHE emission dominated by IC from the needle (spine) scattering the radiation of the jet (layer) A different “flavour” of the spine-layer scenario

GG & FT 2008 Jet - needle

Suggested readings Black holes in galaxies: Ferrarese & Ford 2004, astro-ph/ BH in AGNs: Rees 1984, ARAA, 22, 471 Blandford 1990, Saas Fee Course 20 Krolik, “AGNs”, 1999, Princeton Univ. Press Beaming: Ghisellini 1999, astro-ph/ Unification schemes: Urry & Padovani 1995, PASP, 107, 803 Emission Mechanisms: Rybicki & Lightman, 1979, Wiley & Son Jets: Begelman, Blandford & Rees, 1984, Rev. Mod. Physics, 56, 255 de Young, The physics of extragal. radio sources, 2002, Univ. Chicago Press VHE emission: Aharonian, VHE cosmic gamma radiation, 2004, World Scientific SSC: Tavecchio, Maraschi Ghisellini, 1998, ApJ, 509, 608

Absorption of  -rays

In astrophysical environments  -rays are effectively absorbed through  -> e+  e- Photon-photon pair production in a nutshell    x1x1 x2x2 threshold Rule of thumb: In isotropic rad. fields, with declining spectra:

Internal opacity: limit on  Observations of gamma rays provide interesting limits on the minimum value of the Doppler factor E  = GeV h =5-50 eV (UV photons) Without any correction:  (x)=   R n(1/x) 1/x ~ (1/x)  ~ x   increasing with E (x=E/mc 2 ) where n(1/x) 1/x ~ L (1/x) / R 2  (100 GeV)>>1  -rays cannot escape!!

Taking into account relativistic motion: 1) Intrinsic energy of gamma-ray is lower: decreasing number density of target photons 2) Density of target soft photons also strongly decreases (lower luminosity, larger radius) e.g. Ghisellini & Dondi 1996 One can find:  ‘ (x)=  (x)/  4+2  Therefore :  (x) 1/(4+2  ) Typically  5 Internal opacity: limit on 

Absorption inside the BLR

Intergalactic absorption

For TeV blazars the parameters also depends on the intergalactic absorption correction (Stecker et al. 1992). Values of delta up to 50 are obtained (Krawczynski et al. 2002, Konopelko et al. 2003) The correction is uncertain: deconvolved TeV spectral shape can be used to discriminate between different possibilities  ntergalactic absorption Problem and opportunity at the same time!

Extragalactic background light EBL measurements Mazin & Raue 2007 Starlight Dust

The “  -ray horizon” Coppi & Aharonian 1997 Cen A M87 Mkn 501 3C 273 Mean free path

Aharonian et al. 2006: even with the lowest IR background the de-absorbed spectrum is very hard (photon index=1.5). Large EBL Medium EBL Minimum EBL

Katarzinski et al However, harder intrinsic spectra can be obtained assuming a power law electron distribution with a relatively large lower limit  min F ~ 1/3 The absolute limit is: Synchrotron SSC Below the corresponding freq. synchrotron and SSC spectra are very hard!

B B2B2 ~B (Klein Nishina

Jorstad et al. 2001

Superluminal motion

The relativistic Doppler factor   L=L’  4  ’   t=  t’/   1  cos  Special relat. Photon “compression”

 b (Klein Nishina) bb bb b2b2

Absorption inside the BLR - 2

Constraints from 3C279 Albert at al. 2008

VHE emission of FSRQs 3C 279, z=0.536 Albert at al. 2008

The future -2 New Cherenkov Telescope Arrays: CTA, Europe AGIS, USA

Observed time: (R 0 /c)  2 (1-  cos  ) ~ R 0 /c ! Rees 1978 for M87

3C 279 Spada et al. 2001

Mkn 421 Guetta et al. 2004