Paul Emma, et. al. Sep. 18, 2013 Paul Emma, et. al. Sep. 18, 2013 Design Considerations for the NGLS (Next Generation Light Source) NGLS.

Slides:



Advertisements
Similar presentations
Chris Tennant Jefferson Laboratory March 15, 2013 “Workshop to Explore Physics Opportunities with Intense, Polarized Electron Beams up to 300 MeV”
Advertisements

UCLA 10/1/2010C. Pellegrini, Towards a 5th generation light source 1 What is a 5th Generation light source? C. Pellegrini UCLA Department of Physics and.
Hard X-ray FELs (Overview) Zhirong Huang March 6, 2012 FLS2012 Workshop, Jefferson Lab.
Does the short pulse mode need energy recovery? Rep. rateBeam 5GeV 100MHz 500MWAbsolutely 10MHz 50MW Maybe 1MHz 5MW 100kHz.
P. Emma LCLS FAC 12 Oct Comments from LCLS FAC Meeting (April 2004): J. Roßbach:“How do you detect weak FEL power when the.
P. Emma, SLACLCLS Commissioning – Sep. 22, 2004 Linac Commissioning P. Emma LCLS Commissioning Workshop, SLAC Sep , 2004 LCLS.
P. Emma, SLACLCLS FAC Meeting - April 29, 2004 Linac Physics, Diagnostics, and Commissioning Strategy P. Emma LCLS FAC Meeting April 29, 2004 LCLS.
Paul Emma LCLS Commissioning Status Nov. 11, 2008 SLAC National Accelerator Laboratory 1 LCLS Commissioning Status P. Emma for The.
E. Bong, SLACLCLS FAC Meeting - April 29, 2004 Linac Overview E. Bong LCLS FAC Meeting April 29, 2004 LCLS.
LCLS Transition to Science DOE Status Review of the LUSI MIE Project Near term opportunities for LCLS 'upgrades' J. Hastings for the LCLS Experimental.
Recent developments for the LCLS injector Feng Zhou SLAC Other contributors: Brachmann, Decker, Ding, Emma, Gilevich, Huang, Iverson, Loos, Raubenheimer,
APEX description, status and plans John Corlett for the APEX team Lawrence Berkeley National Laboratory 1.
D.H. Dowell/MIT Talk, May 31, David H. Dowell Stanford Linear Accelerator Center Photocathode RF Guns and Bunch Compressors for High-Duty Factor.
M. Venturini, Sept. 26, 2013, SLAC 1 ─ M. Venturini, Sept. 26, 2013, SLAC Marco Venturini LBNL Sept. 26, 2013 THE LATE NGLS: OVERVIEW OF LINAC DESIGN,
Progress at the XFELs in Europe and Japan Hans-H. Braun, PSI 48 th ICFA Advanced Beam Dynamics Workshop on Future Light Sources March 1-5, 2010 SLAC National.
Low Emittance RF Gun Developments for PAL-XFEL
TTF2 Start-to-End Simulations Jean-Paul Carneiro DESY Hamburg TESLA COLLABORATION MEETING DESY Zeuthen, 22 Jan 2004.
ASTRA Injector Setup 2012 Julian McKenzie 17/02/2012.
S2E in LCLS Linac M. Borland, Lyncean Technologies, P. Emma, C. Limborg, SLAC.
Collective Effects in the Driver of the Wisconsin Free-Electron Laser (WiFEL) Robert Bosch, Kevin Kleman and the WiFEL team Synchrotron Radiation Center.
LCLS Accelerator SLAC linac tunnel research yard Linac-0 L =6 m Linac-1 L  9 m  rf   25° Linac-2 L  330 m  rf   41° Linac-3 L  550 m  rf  0°
D. Filippetto, ALS user meeting, 10/7-9/13 D. Filippetto LBNL The APEX photo-gun: an high brightness MHz repetition rate source FEIS, Key West, Florida,
FLASH II. The results from FLASH II tests Sven Ackermann FEL seminar Hamburg, April 23 th, 2013.
A bunch compressor design and several X-band FELs Yipeng Sun, ARD/SLAC , LCLS-II meeting.
Brief Introduction to (VUV/)Soft X-ray FELs R. P. Walker Diamond Light Source, UK ICFA Workshop on Future Light Sources March 5 th -9 th, 2012 Thomas Jefferson.
External Seeding Approaches: S2E studies for LCLS-II Gregg Penn, LBNL CBP Erik Hemsing, SLAC August 7, 2014.
W.S. Graves 2002 Berlin CSR workshop 1 Microbunching and CSR experiments at BNL’s Source Development Lab William S. Graves ICFA CSR Workshop Berlin, Jan.,
P. Krejcik LINAC 2004 – Lübeck, August 16-20, 2004 LCLS - Accelerator System Overview Patrick Krejcik on behalf of the LCLS.
Post-LH Diagnostic Line for LCLS-II P. Emma, M. Woodley, Y. Nosochkov, Feb. 26, 2014 Steal beam at Hz with y -kicker after LH (  y = 15 mm) Bend.
P I T Z Photo Injector Test Facility Zeuthen Design consideration of the RF deflector to optimize the photo injector at PITZ S.Korepanov.
UCLA Claudio Pellegrini UCLA Department of Physics and Astronomy X-ray Free-electron Lasers Ultra-fast Dynamic Imaging of Matter II Ischia, Italy, 4/30-5/3/
LCLS-II: Accelerator Systems LCLS SAC Meeting P. Emma et al. April 23, 2010.
Twin bunches at FACET-II Zhen Zhang, Zhirong Huang, Ago Marinelli … FACET-II accelerator physics workshop Oct. 12, 2015.
김 귀년 CHEP, KNU Accelerator Activities in Korea for ILC.
Preliminary Tracking Results through LCLS-II P. Emma et al., Oct. 23, 2013 Thanks to Mark Woodley and Yuri Nosochkov for MAD design work Use Christos Papadopoulos.
Development of High Current Bunched Magnetized Electron DC Photogun MEIC Collaboration Meeting Fall 2015 October 5 – 7, 2015 Riad Suleiman and Matt Poelker.
J. Corlett. June 16, 2006 A Future Light Source for LBNL Facility Vision and R&D plan John Corlett ALS Scientific Advisory Committee Meeting June 16, 2006.
, Summary of Working Group 1 Linear Colliders and Light Sources C. Christou, M. Dehler.
G. Penn SLAC 25 September 2013 Comments on LCLS-IISC Design.
X-band Based FEL proposal
PAL-XFEL Commissioning Plan ver. 1.1, August 2015 PAL-XFEL Beam Dynamics Group.
Applications of transverse deflecting cavities in x-ray free-electron lasers Yuantao Ding SLAC National Accelerator Laboratory7/18/2012.
B. Marchetti R. Assmann, U. Dorda, J. Grebenyuk, Y. Nie, J. Zhu Acknowledgements: C. Behrens, R. Brinkmann, K. Flöttmann, M. Hüning,
1 NGLS Outline and Needs in Superconducting RF Materials Development John Corlett SRFMW, July 16, 2012 Office of Science.
Multi-bunch Operation for LCLS, LCLS_II, LCLS_2025
Beam dynamics for an X-band LINAC driving a 1 keV FEL
Robert Bosch, Kevin Kleman and the WiFEL team
Status of the MAX IV Short Pulse Facility
Sara Thorin, MAX IV Laboratory
LCLS2sc MAD files: Injector to Bypass Line
Short pulse, low charge LCLS operation
Status of the CLIC main beam injectors
DC Injector and Space Charge Simulation Status
Gu Qiang For the project team
Paul Scherrer Institut
Linac optimisation for the New Light Source
LCLS-II-HE FEL Facility Overview
F. Villa Laboratori Nazionali di Frascati - LNF On behalf of Sparc_lab
Re-circulating Linac Option
LCLS-II-HE FEL Facility Overview
Injector Topics for Discussion
Two-bunch self-seeding for narrow-bandwidth hard x-ray FELs
Brief Introduction to (VUV/)Soft X-ray FELs
Linac/BC1 Commissioning P
LCLS Commissioning P. Emma, et al
LCLS Tracking Studies CSR micro-bunching in compressors
Modified Beam Parameter Range
Linac Physics, Diagnostics, and Commissioning Strategy P
LCLS FEL Parameters Heinz-Dieter Nuhn, SLAC / SSRL April 23, 2002
Electron Optics & Bunch Compression
Presentation transcript:

Paul Emma, et. al. Sep. 18, 2013 Paul Emma, et. al. Sep. 18, 2013 Design Considerations for the NGLS (Next Generation Light Source) NGLS

What are the new facility directions ? High-rate and Continuous Wave (CW) operation FEL seeding for narrow BW & full coherence Femtosecond x-ray pulses (~ 10  15 sec) Multiple FELs with independently tunable wavelengths Pulse length and BW control at FT-limit Two-Color pulses with variable relative timing & color Expandable facility well into the future  A Next Generation Light Source (NGLS)

A High Repetition Rate CW X-Ray FEL Array CW Superconducting Linac X-Ray Beamlines and End-stations 3-9 FELs ~10 ms ~100 ms 600  s 1  s (CW) BC1 BC2 2.4 GeV 1 MHz injector

An Array of Unique Free-Electron Lasers FEL-1Self-Seeded ( eV) FEL-3Two-Color ( eV) FEL-2 2-Stage HGHG ( eV)

NGLS Layout 1 MHz CW e  injector (  = 0.6  m, Q = 300 pC) 1.3-GHz CW 15 MV/m (24 CM’s, 0.3 mA) Two bunch compressors + heater (500 A) Beam spreader using RF deflectors (  9 FELs) Three (initial) very diverse FEL designs Diagnostics and collimation sections 720-kW main beam stops (  3) 1 MHz CW e  injector (  = 0.6  m, Q = 300 pC) 1.3-GHz CW 15 MV/m (24 CM’s, 0.3 mA) Two bunch compressors + heater (500 A) Beam spreader using RF deflectors (  9 FELs) Three (initial) very diverse FEL designs Diagnostics and collimation sections 720-kW main beam stops (  3) injector linacspreader FELs (1-9) beam stops compressors e - diagnostics exp. halls collimation

Parameters for the CW SC-Linac (2.4 GeV) J. Corlett, L. Doolittle, A. Ratti, R. Wells, et al. Average current = 0.3 mA

Achieved: Successful CW operation Excellent RF design performance at full power (20 MV/m) E-beam design energy (0.75 MeV) < 10  10 gun vac. pressure Cs 2 Te cathode generating 100’s of 1 MHz 40 C in 4 days: QE goes from 10% to 4% (promising lifetime) Next Steps: Test CsK2Sb cathodes (green laser) 6D phase space characterization at gun energy (and later at 30 MeV) NGLS Photo-Cathode Gun (APEX) F. Sannibale, D. Filippetto, C. Papadopoulos, R. Wells 186MHz eeee

NGLS High-Rate Injector (R&D at APEX - LBNL) RF Gun 0.8 MeV warm UV solenoids 1.3-GHz buncher 8  x,y  m I pk  45 A  E /E  20 keV APEX Gun (1 MHz CW) Cs 2 Te F. Sannibale, D. Filippetto, C. Papadopoulos, R. Wells APEX Parameters (done): first beam Mar. 18 ’13 velocity bunching (  1/6) 186MHz

650-MHz booster for the injector? Possible layout for injector and first linac section at end of linac No need for 3.9 GHz RF linearizer kA M. Venturini

Removing Energy Chirp with a Wakefield add 5-m long de-chirper (2a = 6 mm) L3 on crest …or 35-deg off crest 5-m long dechirper NGLS Longitudinal Phase Space K. Bane, P. Emma, H.-S. Kang, G. Stupakov, M. Venturini point-charge wake PAL-ITF Dechirper Simulations dechirper off a = 4-15 mm p = 0.5 mm h = 0.6 mm g = 0.3 mm L = 1 m dechirper on PAL-ITF (Korea) corrugated pipe Aug. ‘13 experiment

Linac and Compressor Layout for 4 GeV (cathode to undulator) CM01 CM2,3 CM04 CM08 CM09 CM34 BC1 280 MeV R 56 = -85 mm I pk = 100 A L b = 0.75 mm   = 0.62 %BC2 850 MeV R 56 = -80 mm I pk = 500 A L b = 0.13 mm   = 0.50 % GUN 0.75 MeV LH 94 MeV R 56 = -5 mm I pk = 46 A L b = 1.5 mm   = 0.02 % L0   0 V 0  94 MVL1  =  17.0° V 0 = 195 MVHL  = 180 ° V 0 = 0L2  =  18° V 0 = 600MVL3  = 0 V 0 = 3150 MV Spreader 4.0 GeV R 56 = 0 I pk = 500 A L b = 0.13 mm    % 300 pC ; Machine layout ; Bunch length L b is FWHM 3.9 GHz

t V MHz = 3/4  186 MHz (7.2 ns) z DC bend septum Beam Spreader System RFdeflector Split again 3 times with 3 more deflectors at 151 MHz = 13/16  186 MHz (6.6 ns) yxyxyx x RF gun frequency = 1300/7 MHz  186 MHz ( 5.4 ns) end of linac Phase-I (3 FELs) needs only one RF deflector Keep long (139 MHz)  t = 5.4 ns collide two x-ray pulses distribute e  bunches to 3-9 FELs M. Placidi, C. Sun 5.4 ns

Pulse-Stealing Diagnostics (BC1, BC2, EOL) 250-W dump 1200-W dump 1 MHz Linac Intercepting diagnostics used only at low rate Measure at 1 kHz: Energy Energy Proj. energy spread Proj. energy spread Slice energy spread Slice energy spread Proj. emittance Proj. emittance Slice emittance Slice emittance Bunch length Bunch length Charge… Charge… 1 kHz Kicker (<1  s) TCAV Screens/wires 100-W dump

Superconducting Undulator Technology LCLS Nb 3 Sn Perm. Mag. NbTi NGLS S. Prestemon, D. Arbelaez 80% of short sample limit Use Nb 3 Sn SC-undulators for efficiency & rad. hardness  Magnetic gap = 7.5 mm.  Vacuum chamber  5.5 mm

97 m L mag = 26.4 m, N u = 8 L mag = 36.3 m, N u = 11 P 35.2 m52.8 m 8.8 m mono m FEL-1 (SASE/Self-Seeded) 1 MHz eV To 2 keV SASE Near FT-limit 58 m P rad-1 mod-1 rad-2 mod m 6.0 m L mag = 26.4 m, N u = 8 FEL-2 (2-Stage HGHG) 0.1 MHz eV + 3 rd stage option FT-limited pulses ( fs) 123 m L mag = 33 m, N u = 10 P 4.4 m mod m L mag = 33 m, N u = 10 P 48.4 m mod2 0.5 mr 3 mm FEL-3 (Two-Color FEL) 0.1 MHz, eV, two 1-fs pulses, variable color, pol., & timing Based on Fermi Results in Trieste Based on SXRSS Based on SPARC Chirp/Taper Results in Frascati

Chirped/Tapered 2-Color FEL Two 1-fs pulses at 0.1 MHz, eV, var. color, pol., & timing Possible attosec. pulse with ESASE Few cycle 2-5  m laser pulse chirps very short section of e-beam G. Marcus, A. Zholents Δt FWHM ≈ 1.7 fs 2  at 1.0 keV addtaper 8 fs chirpedSASE ee

More LBNL Presentations Soon Wed. Sep. 25 (13:30) G. Penn - Three Unique FEL’s for NGLS J. Byrd - Longitudinal Feedback for SRF Linac Thurs. Sep. 26 (09:00) M. Venturini – Bunch Compression and Dynamics F. Sannibale – High-Rate, High-Brightness Injector Wed. Oct. 2 (13:30)? J. Corlett - Superconducting RF Linac Design C. Steier - Collimation