Transport in flowering plants

Slides:



Advertisements
Similar presentations
1.7 – THE TRANSPORT OF SUBSTANCES IN PLANTS
Advertisements

Transport in Plants Objectives:
Transport in Plants Explain the need for transport systems in multicellular plants in terms of size and surface area:volume ratio; Describe, with the aid.
Transport in Plants Explain the need for transport systems in multicellular plants in terms of size and surface- area-to-volume ratio. Describe the distribution.
TRANSPORT in PLANTS.
Exchange and Transport
Chapter 36 Reading Quiz What is the diffusion of water called?
Transport in plants.
Transport in Plants.
Recap - Starter State 3 differences between xylem and phloem structures State the differences between the symplast and apoplast pathways Define transpiration.
Transport in Plants.
Water transport in plants
IB Assessment Statements Define Transpiration Explain how water is carried by the transpirational stream, including structure of xylem vessels,
Transport in flowering plants
Plant Transport – Transpiration and Phloem Movement.
Transport in Plants.
36 Resource Acquisition and Transport in Vascular Plants.
Transport in Vascular Plants Chapter 36. Transport in Plants Occurs on three levels:  the uptake and loss of water and solutes by individual cells 
Plants Transport and Tissue Transport in plants H 2 O & minerals – transport in xylem – transpiration Sugars – transport in phloem – bulk flow.
Long-Distance Transport in Plants Biology 1001 November 21, 2005.
NOTES: CH 36 - Transport in Plants
Transport In Angiospermophytes Nisha Seebachan Period 3A January 16, 2012.
Transpiration. Slide 2 of 32 Transport Overview  Plants need CO 2, Sunlight and H 2 O in the leaves  ONLY H 2 O needs to be transported to the leaves.
Transport in Vascular Plants Chapter 36. Review: Cell Transport Passive transport: – Diffusion across membrane with concentration gradient, no energy.
Plant cell requirements
Transport in Flowering Plants. Vascular Bundle Consists mainly of Xylem Phloem Referred to as vascular bundles in stems and steles in roots.
Also Known As Chapter 36!! Transpiration + Vascularity.
WATER TRANSPORT IN PLANTS. An Overview of Transport in Plants.
Transport In Plants. Cellular Transport Diffusion Osmosis Facilitated Diffusion Active Transport Proton Pump.
SECTION 13.4: TRANSPORT IN PLANTS
9.2 - Transport in Angiospermophytes
Transport in Plants.
titletitle Transport in flowering plants is provided by vascular tissue xylemphloem transport water substances dissolved in water transport organic nutrients.
Transport.
To describe the structure and function of phloem 17 December 2015 WALT WILF Describe and recognise the components of phloem tissue Distinguish between.
Transport in Plants
Biology Sylvia S. Mader Michael Windelspecht
Ch. 36 Plant Transport. Three levels of plant transport Uptake of water and solutes by individual cells Short distance cell to cell transport Long distance.
Transport in Multicellular Plants: Part 2 Ch. 7. XYLEM and PHLOEM.
Transport of Water Entry point –Root hairs by osmosis Two pathways by which water moves toward the center of the root. 1.Apoplast (“nonliving” portion.
ADAPTATIONS FOR PLANT TRANSPORT. DIAGRAMS OF PARTS OF THE PLANT.
Plant Transport Chapter 36. Overview of Transport Water leaves the plant via transpiration Oxygen leaves the plant through leaves Sugars move down into.
Transport in Plants. Warm up questions-Xylem or Phloem Which is nearest the centre of a root? Which type of vascular tissue has walls reinforced with.
© 2014 Pearson Education, Inc. Figure © 2014 Pearson Education, Inc. Figure 36.1a.
Chapter 10, Transport in Multicellular Plants. Particular requirements of plants: Carbon dioxide Oxygen Organic nutrients Inorganic ions and water Energy.
Plant Transport Chapter 36. What you need to know! The function of xylem and phloem tissue The specific functions of tracheids, vessels, sieve-tube elements,
PLANT TRANSPORT Advanced Biology Chapter 22 NOTES.
WATER and MINERAL UPTAKE IN PLANTS. Transport of Water in Plant Water enters a plant through its ROOT HAIR CELLS. Root hairs increase the surface area.
Transport in Vascular Plants. Why does transport need to occur? Materials need to be transported between the root system and the shoot system.
PHYSIOLOGY and the ENVIRONMENT
Maintaining a Balance Topic 14: Transport of Nutrients in Plants
Vascular tissues in plants
Transport in Vascular Plants
Red Hunting – Topic 4 Transport in Plants
All to collect hand out and use as I go through the lecture
CHAPTER 36 TRANSPORT IN PLANTS.
Transport in Plants part 2
12a2 Revision.
National 5 Biology Unit 2 – Cell Biology
Resource Acquisition and Transport CO2 O2
Plant Transport Chapters 28 & 29.
Transport in Vascular Plants
Transport in Vascular Plants
Crossword!.
The Chapter 29 Homework is due on Thursday, March 14
Ch. 36 Transportation In Plants
Presentation transcript:

Transport in flowering plants a summary for AS Biology

***relate the structure of xylem vessel elements to their functions; http://www.pearsoned.ca/school/science11/biology11/sugartransport.html http://dendro.cnre.vt.edu/forestbiology/cambium2_no_scene_1.swf Objectives: *describe the distribution of xylem and phloem tissue in roots, stems and leaves of dicotyledonous plants **describe the structure of xylem vessel elements and be able to recognise these using the light microscope; ***relate the structure of xylem vessel elements to their functions;

Uptake of water: the transpiration stream The transpiration stream is the one-way movement of water: from the soil into root hairs; across the root into xylem vessels; through root stem and leaf xylem into mesophyll cells; by evaporation from mesophyll cell surfaces into leaf air spaces; by diffusion from leaf air spaces through stomata into the atmosphere

Uptake of water : the transpiration stream The movement of water in the transpiration stream is down a water potential gradient from soil solution to atmosphere The transpiration stream is ‘driven’ by the evaporation of water from mesophyll cell surfaces, each evaporating molecule ‘pulling’ another one behind it because of the cohesion of water molecules (due to hydrogen bonding) The ‘pull’ is transmitted from molecule to molecule in an unbroken chain all the way down to the root: this is the cohesion-tension hypothesis As well as cohesion, the adhesion of water molecules to the vessel walls and the cellulose molecules in mesophyll cell walls supports the column of water and keeps it from breaking Mineral ions taken by active transport into root hairs are carried passively in the transpiration stream

Root structure stele Know these tissues! structure location function

Root structure { Endodermis Epidermis Cortex parenchyma cell Air space Stele Pericycle Phloem TS buttercup root (low power) TS buttercup root stele (high power) Xylem Know these tissues! structure location function

Passage of water across a root Root hair Epidermis Cortex Endodermis Pericycle Xylem

Passage of water across a root Some water (blue line) crosses the cell surface membrane into the cytoplasm and passes from cell to cell via plasmodesmata: this is the symplastic pathway. Some water enters the root hair vacuole by osmosis, and travels by osmosis from vacuole to vacuole across the cortex. This is the vacuolar pathway. Most water (red line) does not enter the living cells at all but passes along cells walls and intercellular spaces: this is the apoplastic pathway. The vacuolar pathway presents the most resistance to water flow (because of the number of membranes to be crossed), the apoplastic pathway the least … … but at the endodermis the apoplastic pathway is completely blocked by a strip of corky material (the Casparian strip) around the walls of the endodermal cells.

Passage of water across a root The Casparian strip completely blocks the apoplast pathway … … so that only the symplast and vacuolar pathways are available. Why is this important? It allows the flow of water and dissolved minerals into the plant to be controlled.

Movement through the xylem Water enters the xylem because its water potential is reduced by the upward ‘pull’ (tension) on the water column it contains Adhsion of water molecules to the xylem vessel walls also helps maintain the column.

Structure of xylem Xylem is a compound tissue, consisting of: two types of conducting cell, vessels and tracheids fibres (thin elongated cells with thick woody walls and no living contents) Xylem parenchyma (living cells with thin cellulose cell walls)

Vessels and tracheids Vessels are short hollow cells with woody (lignified) cell walls and no living contents at maturity. Their end walls break down, so that water can flow freely from one to the next. Many vessels have pits allowing sideways movement of water from vessel to vessel: this can help by-pass blockages. Tracheids are narrower lignified cells with tapered ends that overlap, transferring water from cell to cell via pits.

Vessel with annular thickening Xylem vessels Xylem vessels show different patterns of woody thickening (lignification), giving them a function in support as well as water conduction. LS Xylem parenchyma Fibre Pitted vessel Vessel with annular thickening TS

The whole picture 1 Water evaporates from the surface of a mesophyll cell into the leaf air space 2 2 By cohesion, another water molecule is pulled into the cell from the leaf xylem 1 3 3 By cohesion, the pull is transmitted all the way down the stem and root xylem 3 5 … so that water flows down a water potential gradient from the soil across the vacuolar, symplastic and apoplastic pathways in the root 3 4 The upward pull lowers the water potential in the root xylem … 4 5

Use of a potometer to investigate water uptake Why is a potometer like the one above usually assembled under water? What is the function of the central reservoir? Describe how you would use the above apparatus to investigate the effect of moving air on the rate of water uptake by a leafy shoot.

Use of a potometer to investigate water uptake The graph shows the results of an experiment in which a potometer was used to measure the uptake of water by a leafy shoot in three different conditions: still dry air, still humid air and dry air blown by a fan. Suggest which curve was obtained in which condition. Give reasons for your answers. Calculate (a) the mean rate of water uptake by the shoot in moving dry air, (b) the percentage increase in mean rate of uptake when changing from still dry air to moving dry air.

TRANSLOCATION Objectives: * ** *** ****

Translocation in phloem Phloem transports organic products of photosynthesis from leaves or storage organs to sites of use It also transports plant growth substances and mineral ions Unlike xylem, the conducting elements of phloem are living cells, and the transport (called translocation) is an active process http://glencoe.mcgraw-hill.com/sites/9834092339/student_view0/chapter38/animation_-_phloem_loading.html

Structure of phloem In addition phloem contains parenchyma cells and phloem fibres Phloem fibres Phloem In roots phloem is found between the ‘arms’ of the star-shaped xylem In stems phloem is found on the peripheral side of xylem in vascular bundles The conducting elements of phloem are sieve cells, assisted by companion cells

Phloem structure LS Phloem parenchyma Sieve plate Plasmodesmata Sieve cell. These join end to end to form sieve tubes, connected by perforated end walls (sieve plates) Companion cell Sieve plate Sieve cells have little cytoplasm, no nucleus and very few organelles. Every sieve cell is closely associated with a companion cell, the two cells communicating through many plasmodesmata TS Phloem parenchyma

TRANSLOCATION Objectives: * ** *** ****

Phloem structure Sieve cell Sieve plates are associated with large amounts of a protein called P-protein. Its precise role is unknown.(It is now believed to be untrue) Parenchyma cell Companion cell Sieve plate A sieve cell and its adjacent companion cell are produced by division of the same parent cell. The companion cell probably carries out metabolic functions for the sieve cell, compensating for the sieve cell’s lack of organelles. At the tips of leaf veins, companion cells have folded surfaces and act as transfer cells, actively transporting sucrose from mesophyll cells into sieve cells.

Companion cells In between sieve tubes Large nucleus, dense cytoplasm Many mitochondria to load sucrose into sieve tubes Many plasmodesmata (gaps in cell walls between companion cells and sieve tubes) for flow of minerals

Phloem Structure and Function: Sieve Elements Specialises in efficient transport of food. Living cells but do not have a nucleus. Long, narrow, thin walled living cells. End walls are heavily perforated – called a sieve plate. A series of sieve elements is called a sieve tube. Companion Cells Assist the sieve element in food transport. Live narrow cells with a prominent nucleus. Its nucleus also controls the sieve element. Dense cytoplasm particularly rich in mitochondria.

Movement of Sugars Translocation: movement of assimilates (sugars and other chemicals) through the plant Source: a part of the plant that releases sucrose to the phloem e.g. leaf Sink: a part of the plant that removes sucrose from the phloem e.g. root

The mass flow hypothesis The mass flow hypothesis for the movement of organic solutes in phloem suggests that as sucrose is actively transferred into sieve cells at its source, water follows it by osmosis, raising the pressure in the sieve cells at that point. The mass flow hypothesis Where sucrose is actively transferred out of sieve cells (a sucrose ‘sink’), water again follows by osmosis, reducing the pressure in the sieve cells at that point. There is therefore a pressure gradient pushing sucrose and other solutes from source to sink.

The mass flow hypothesis The contents of sieve cells are under positive pressure, as is shown by the feeding of aphids. The mass flow hypothesis Aphids plug their piercing mouthparts (stylets) into sieve cells, and the pressure in the phloem pushes its contents into the insect’s gut – sometimes so quickly that it exudes from the aphid’s anus.

Sucrose Entering the Phloem Active process (requires energy) Companion cells use ATP to transport hydrogen ions out of their cytoplasm As hydrogen ions are now at a high concentration outside the companion cells, they are brought back in by diffusion through special co-transporter proteins, which also bring the sucrose in at the same time As the concentration of sucrose builds up inside the companion cells, they diffuse into the sieve tubes through the plasmodesmata (gaps between sieve tubes and companion cell walls)

Sucrose movement through phloem Sucrose entering sieve tube lowers the water potential (more negative) so water moves in by osmosis, increasing the hydrostatic pressure (fluid pushing against the walls) at the source Sucrose used by cells surrounding phloem and are moved by active transport or diffusion from the sieve tube to the cells. This increases water potential in the sieve tube (makes it less negative) so water moves out by osmosis which lowers the hydrostatic pressure at the sink

Movement along the phloem Water entering the phloem at the source, moving down the hydrostatic pressure gradient and leaving at the sink produces a flow of water along the phloem that carries sucrose and other assimilates. This is called mass flow. It can occur either up or down the plant at the same time in different phloem tubes

Evidence for translocation Radioactively labelled carbon from carbon dioxide can appear in the phloem Ringing a tree (removing a ring of bark) results in sugars collecting above the ring An aphid feeding on the plant stem contains many sugars when dissected Companion cells have many mitochondria Translocation is stopped when a metabolic poison is added that inhibits ATP pH of companion cells is higher than that of surrounding cells Concentration of sucrose is higher at the source than the sink

Evidence against translocation Not all solutes move at the same rate Sucrose is moved to parts of the plant at the same rate, rather than going more quickly to places with low concentrations The role of sieve plates is unclear