*This work was supported by the United States Department of Energy

Slides:



Advertisements
Similar presentations
Report on SEWG mixed materials EU PWI TF meeting Madrid 2007 V. Philipps on behalf of SEWG members Mixed material formation is a among the critical ITER.
Advertisements

Max-Planck-Institut für Plasmaphysik EURATOM Assoziation Interaction of nitrogen plasmas with tungsten Klaus Schmid, A. Manhard, Ch. Linsmeier, A. Wiltner,
Kazuyoshi Sugiyama, SEWG meeting, Culham, July Outline: 1.Introduction 2.Experimental procedure 3.Result 4.Summary Kazuyoshi Sugiyama First.
Max-Planck-Institut für Plasmaphysik EURATOM Assoziation K. Schmid SWEG Deuterium retention in graphite samples exposed to beryllium-seeded.
Vienna University of Technology (TU Wien) slides provided by F. Aumayr EURATOM – ÖAW: Contribution of the Austrian Fusion Association 2006 Innsbruck University.
SEWG Fuel Retention July 2008 © Matej Mayer Fuel retention in ASDEX Upgrade tungsten coatings M. Mayer, M. Balden, K. Krieger, S. Lindig, O. Ogorodnikova,
SEWG Gas Balance 2007 © Matej Mayer First results on deuterium depth profiling in W tiles M. Mayer 1, V.Kh. Alimov, V. Rohde 1, J. Roth 1, A. Herrmann.
C. Björkas, K. Vörtler and K. Nordlund Department of Physics, University of Helsinki Joint TFE-SEWG - Material Migration and Material Mixing meeting MD.
Max-Planck-Institut für Plasmaphysik EURATOM Assoziation K. Schmid SEWG meeting on mixed materials Parameter studies for the Be-W interaction Klaus Schmid.
Institute for Plasma Physics Rijnhuizen D retention in W and mixed systems in Pilot-PSI G. De Temmerman a, K. Bystrov a, L. Marot b, M. Mayer c, J.J. Zielinski.
6 th EU PWI TF Meeting Madrid, Oct Tritium Inventory in ITER: Laboratory data and extrapolation from tokamaks Th Loarer, J Roth, S Brezinsek, A.
D retention in O-covered and pure beryllium
18 th International Conference on Plasma Surface Interaction in Controlled Fusion Toledo, Spain, May 26 – 30, Deuterium trapping in tungsten damaged.
Complex chemical interactions of lithium, deuterium, and oxygen on lithium-coated graphite PFC surfaces C.N. Taylor1, B. Heim1, J.P. Allain1, C. H. Skinner2,
© Olga Ogorodnikova, 2008, Salamanka, Spain Current status of assessment of Tritium inventory in all-W device O.V. Ogorodnikova and E. d’Agata.
HYDROGEN INTERACTION WITH NICKEL CONTAINING RADIOGENIC HELIUM.
ADSORPTION STATES OF PROTIUM AND DEUTERIUM IN POLYMER HYDROCARBON FILMS FROM T-10 TOKAMAK V.G. Stankevich 1, N.Yu. Svechnikov 1, L.P.Sukhanov 1, K.A.Menshikov.
1 EFFECTS OF CARBON REDEPOSITION ON TUNGSTEN UNDER HIGH-FLUX, LOW ENERGY Ar ION IRRADITAION AT ELEVATED TEMPERATURE Lithuanian Energy Institute, Lithuania.
The removal of surface atoms due to energetic particle bombardment
L.B. Begrambekov Plasma Physics Department, Moscow Engineering and Physics Institute, Moscow, Russia Peculiarities, Sources and Driving Forces of.
PISCES R. Doerner, ITPA SOL/DIV meeting, Avila, Jan. 7-10, 2008 Mixed plasma species effects on Tungsten M.J. Baldwin, R.P. Doerner, D. Nishijima University.
Dynamic hydrogen isotope behavior and its helium irradiation effect in SiC Yasuhisa Oya and Satoru Tanaka The University of Tokyo.
Co-deposition of deuterium and impurities in plasma-wall interaction simulators Marek Rubel a, Per Petersson a, Arkadi Kreter b a Alfvén Laboratory, KTH,
Y. Ueda, M. Fukumoto, H. Kashiwagi, Y. Ohtsuka (Osaka University)
R.D. Kolasinski, D.A. Buchenauer, R.A. Causey, J. Whaley Sandia National Laboratories, Livermore, CA M. Shimada, J.P. Sharpe, R.J. Pawelko Idaho National.
Japan PFC/divertor concepts for power plants. T retention and permeation  Problems of T retention would not be serious…. Wall temperature will exceeds.
Integrated Effects of Disruptions and ELMs on Divertor and Nearby Components Valeryi Sizyuk Ahmed Hassanein School of Nuclear Engineering Center for Materials.
K.Umstadter –-Laser+D on W PISCES Effects of transient heating events on W PFCs in a steady-state divertor-plasma environment Karl R. Umstadter, R. Doerner,
Deuterium retention mechanisms in beryllium M. Reinelt, Ch. Linsmeier Max-Planck-Institut für Plasmaphysik EURATOM Association, Garching b. München, Germany.
Dynamic evolution of mixed materials bombarded with multiple ions beams and impurities Tatyana Sizyuk Ahmed Hassanein School of Nuclear Engineering Center.
Ion-Driven Permeation of Deuterium through Tungsten Motivation Permeation experiment Results Next steps A. V. Golubeva, M. Mayer, J. Roth.
R. Doerner, May 9, 2005 PFC Program Review, PPPL PISCES ITER-simulation experiments on Mixed-Materials (Be, C, W) R. P. Doerner, M. J. Baldwin and D. Nishijima.
R. Doerner, IAEA CRP on H in Materials, Vienna, Sept. 26, 2006 Mixed-material studies in PISCES-B R. P. Doerner, M. J. Baldwin, J. Hanna and D. Nishijima.
Salamanca.ppt, © Thomas Schwarz-Selinger, 03. Juni 2008 G. S. Oehrlein*, T. Schwarz-Selinger, K. Schmid, M. Schlüter and W. Jacob Interaction of Deuterium.
Measurement and modeling of hydrogenic retention in molybdenum with the DIONISOS experiment G.M. Wright University of Wisconsin-Madison, FOM – Institute.
Sachiko Suzuki 1, Akira Yoshikawa 1, Hirotada Ishikawa 1, Yohei Kikuchi 1, Yuji Inagaki 1, Naoko Ashikawa 2, Akio Sagara 2, Naoaki Yoshida 3, Yasuhisa.
K. Sugiyama, 9th International Workshop on Hydrogen Isotopes in Fusion Reactor Materials, Salamanca, June 2-3, Max-Planck-Institut für Plasmaphysik.
R. P. Doerner, 2 nd PMIF Meeting, Juelich, Sept , 2011 Plasma interactions with Be surfaces R. P. Doerner, D. Nishijima, T. Schwarz-Selinger and.
W coating of CFC tiles for the JET new wall - Task Agreement: JW6-TA-EP2-ILC-05 Manufacturing and testing of W-coated CFC tiles for installation in JET.
R. Doerner, ITPA SOL/DIV meeting, Avila, Jan. 7-10, R. P. Doerner, G. De Temmerman, M.J. Baldwin, D. Nishijima Center for Energy Research, University.
Depth-profiling and thermal desorption of hydrogen isotopes for plasma facing carbon tiles in JT-60U (Long term hydrogen retention) T. Tanabe, Kyushu University.
Olga Ogorodnikova, 2008, Salamanka, Spain Comments to modelling of hydrogen retention and permeation in tungsten O.V. Ogorodnikova Max-Planck-Institut.
Introduction to Plasma- Surface Interactions Lecture 3 Atomic and Molecular Processes.
ITPA - Meeting, Toronto; Session 3 - High Z studies 3 - High-Z studies (Chair - A. Herrmann) 16:25 (0:10) A. Herrmann - Introduction 16:35.
Sputter deposition.
Effects of tungsten surface condition on carbon deposition
1 A. Kitamura, H. Iwai, R. Nishio, R. Satoh, A. Taniike and Y. Furuyama Department of Environmental Energy Science, Graduate School of Science and Technology,
PSI 2008 Toledo May 2008 © Matej Mayer Carbon balance and deuterium inventory from a carbon dominated to a full tungsten ASDEX Upgrade M. Mayer a, V. Rohde.
Edge-SOL Plasma Transport Simulation for the KSTAR
1 US PFC Meeting, UCLA, August 3-6, 2010 DIONISOS: Upgrading to the high temperature regime G.M. Wright, K. Woller, R. Sullivan, H. Barnard, P. Stahle,
R. Doerner, ITPA SOL/DIV meeting, Avila, Jan. 7-10, Be deposition on ITER first mirrors: layer morphology and influence on mirror reflectivity G.
The effect of displacement damage on deuterium retention in plasma-exposed tungsten W.R.Wampler, Sandia National Laboratories, Albuquerque, NM R. Doerner.
R. Doerner, PFC Program Meeting, MIT, July 8-10, 2009 Mixed Interactions of W, Be, C, D & He R. Doerner for the PISCES Team In collaboration with members.
1 Deuterium retention and release in tungsten co- deposited layers G. De Temmerman a,b, and R.P. Doerner a a Center for Energy Research, University of.
Erosion/redeposition analysis of CMOD Molybdenum divertor and NSTX Liquid Lithium Divertor J.N. Brooks, J.P. Allain Purdue University PFC Meeting MIT,
L. Moser – FuseNet PhD Event 2015 – Prague Influence of high magnetic field on plasma sputtering of ITER First Mirrors L. Moser, L. Marot, R. Steiner and.
MOLIBDENUM MIRRORS WITH COLUMN NANOGRAIN REFLECTING COATING AND EFFECT OF ION- STIMULATED DIFFUSION BLISTERRING RRC «Кurchatov Institute» А.V. Rogov, К.Yu.Vukolov.
10th ITPA conference, Avila, 7-10 Jan Changes of Deuterium Retention Properties on Metals due to the Helium Irradiation or Impurity Deposition M.Tokitani.
High Resolution Depth Profiling of Ti Oxidation
9 th International Workshop on Hydrogen Isotopes in Fusion Reactor Materials Salamanca, Spain, June 2 - 3, Simulation experiments on neutron damage.
J. Roth: ITPA SOL/DIV, Avila, Jan Prediction of ITER T retention levels with W PFCs J. Roth, and the SEWG Fuel retention of the EU Task Force on.
Erosion and Deposition in Tokamaks Christian Schulz Institut für Energieforschung - Plasmaphysik Assoziation EURATOM- Forschungszentrum Jülich Trilateral.
Member of the Helmholtz Association Fuel Retention and Erosion of Metallic Plasma-Facing Materials under the Influence of Plasma Impurities A. Kreter 1,
1 Activation by Medium Energy Beams V. Chetvertkova, E. Mustafin, I. Strasik (GSI, B eschleunigerphysik), L. Latysheva, N. Sobolevskiy (INR RAS), U. Ratzinger.
Investigation of the Performance of Different Types of Zirconium Microstructures under Extreme Irradiation Conditions E.M. Acosta, O. El-Atwani Center.
1 ITC-22, November 2012, Toki, Japan 1 Modelling of impurity transport, erosion and redeposition in fusion devices: applications of the ERO code A. Kirschner.
Surface Analysis of Graphite Limiter and W-coating Testing on HT-7
Tatyana Sizyuk Ahmed Hassanein School of Nuclear Engineering
Analysis of samples exposed to Pilot–PSI Plasma
Deuterium retention for sample temperature of 500 K
Presentation transcript:

*This work was supported by the United States Department of Energy DEUTERIUM RETENTION IN TUNGSTEN EXPOSED TO CARBON-SEEDED DEUTERIUM PLASMA * Igor I. Arkhipov, Vladimir Kh. Alimov, Dmitrii A. Komarov Rion A. Causey*, Robert D. Kolasinski* A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, RAS, Moscow, Russia *Sandia National Laboratories, Livermore, USA Outline Introduction Experimental Results & Discussion Conclusions *This work was supported by the United States Department of Energy under Contract 512244 with Sandia National Laboratories

Irradiation conditions Introduction Irradiation conditions Pdiv, Pa Flux, D/m2s Ei, eV* C, at.% Tsur, K ITER divertor [1] 4 ~1×1023-24 ≤100 ? 520 & 850 JET [2] ≤20 380-520 PISCES-B [3] ~1×1022 100 0.5; 1; 1.4 350-1200 Ion source [4] ~4×10-5 ~6×1019 500 1 300, 500 Magnetron [5] ~1×1021 400 ≤1 390-1000 [1] G.Federici et al., J. Nucl. Mater. 313-316 (2003) 11-22 [2] J.P. Coad, et.al., J. Nucl. Mater. 313-316 (2003) 419-423 [3] F.C. Sze et.al., J. Nucl. Mater. 266-269 (1999) 1212-1218 [4] M.Poon, et al., J. Nucl. Mater. 337-339 (2005) 629-633 [5] This work

Irradiation conditions Introduction Irradiation conditions Pdiv, Pa Flux, D/m2s Ei, eV* C, at.% Tsur, K ITER divertor [1] 4 ~1×1023-24 ≤100 ? 520 & 850 JET [2] ≤20 380-520 PISCES-B [3] ~1×1022 100 0.5; 1; 1.4 350-1200 Ion source [4] ~4×10-5 ~6×1019 500 1 300, 500 Magnetron [5] ~1×1021 400 ≤1 390-1000 [1] G.Federici et al., J. Nucl. Mater. 313-316 (2003) 11-22 [2] J.P. Coad, et.al., J. Nucl. Mater. 313-316 (2003) 419-423 [3] F.C. Sze et.al., J. Nucl. Mater. 266-269 (1999) 1212-1218 [4] M. Poon, et al., J. Nucl. Mater. 337-339 (2005) 629-633 [5] This work

Material migration in divertor tokamaks Introduction Material migration in divertor tokamaks Distribution of erosion/deposition areas in the JET divertor (1999-2001)* *P.Coad, et al., J. Nucl. Mater. 313-316 (2003) 419

Erosion of carbon by deuterium Introduction Erosion of carbon by deuterium Sputtering yields curves for fusion relevant materials for irradiation by deuterium* (Physical sputtering yields for some ion mass are plotted in the case of W) 100 *G.F. Matthews, J. Nucl. Mater. 337-339 (2005) 1-9

Scheme of erosion/re-deposition processes within the divertor* Introduction Material migration in divertor tokamaks Scheme of erosion/re-deposition processes within the divertor* *G.F. Matthews, J. Nucl. Mater. 337-339 (2005) 1-9

Erosion of tungsten by tritium Introduction Erosion of tungsten by tritium Ion impact energy at the outer divertor target for a completely detached N2 seeded shorts in JET. The effect of ELMs of different sizes is shown* *G.F. Matthews, J. Nucl. Mater. 337-339 (2005) 1-9

D retention in C seeded D-plasma exposed W Experimental results Introduction D retention in C seeded D-plasma exposed W Experimental results Dominant factors: 1. substrate temperature 2. whether carbon is deposited on the W surface There is a carbon-impurity concentration of beginning of C-deposition: 0.75% at 850 K 1% at 750 K Uncontaminated surface: 1. Blisters, bubbles and/or pits are formed 2. D retention decreases with temperature increase C-contaminated surface: 1. a-C:D film or/and W2C layer are formed 2. D retention in C-contaminated W larger than in uncontaminated one The most of deuterium are residing in the carbon films Thin a-C:D film or W2C layer can significantly decrease D-retention in W

D retention in C seeded D-plasma exposed W Experimental results Introduction D retention in C seeded D-plasma exposed W Experimental results Dominant factors: 1. substrate temperature 2. whether carbon is deposited on the W surface There is a carbon-impurity concentration of beginning of C-deposition: 0.75% at 850 K 1% at 750 K Uncontaminated surface: 1. Blisters, bubbles and/or pits are formed 2. D retention decreases with temperature increase C-contaminated surface: 1. a-C:D film or/and W2C layer are formed 2. D retention in C-contaminated W larger than in uncontaminated one The most of deuterium are residing in the carbon films Thin a-C:D film or W2C layer can significantly decrease D-retention in W

D retention in C seeded D-plasma exposed W Experimental results Introduction D retention in C seeded D-plasma exposed W Experimental results Dominant factors: 1. substrate temperature 2. whether carbon is deposited on the W surface There is a carbon-impurity concentration of beginning of C-deposition: 0.75% at 850 K 1% at 750 K Uncontaminated surface: 1. Blisters, bubbles and/or pits are formed 2. D retention decreases with temperature increase C-contaminated surface: 1. a-C:D film or/and W2C layer are formed 2. D retention in C-contaminated W larger than in uncontaminated one The most of deuterium are residing in the carbon films Thin a-C:D film or W2C layer can significantly decrease D-retention in W

D retention in C seeded D-plasma exposed W Experimental results Introduction D retention in C seeded D-plasma exposed W Experimental results Dominant factors: 1. substrate temperature 2. whether carbon is deposited on the W surface There is a carbon-impurity concentration of beginning of C-deposition: 0.75% at 850 K 1% at 750 K Uncontaminated surface: 1. Blisters, bubbles and/or pits are formed 2. D retention decreases with temperature increase C-contaminated surface: 1. a-C:D film or/and W2C layer are formed 2. D retention in C-contaminated W larger than in uncontaminated one The most of deuterium are residing in the carbon films Thin a-C:D film or W2C layer can significantly decrease D-retention in W

Erosion of tungsten by carbon Introduction Erosion of tungsten by carbon Sputtering yields curves for fusion relevant materials for irradiation by deuterium* (Physical sputtering yields for some ion mass are plotted in the case of W) 100 *G.F. Matthews, J. Nucl. Mater. 337-339 (2005) 1-9

W erosion as function of Te and C impurity concentration* Introduction Erosion of tungsten by carbon W erosion as function of Te and C impurity concentration* *K. Schmid, J. Roth, J. Nucl. Mater. 313-316 (2003) 302-310

Partially contaminated surface in C-seeded D-plasma Introduction In this work: Partially contaminated surface in C-seeded D-plasma

Top view of magnetron cathode surface Experimental Top view of magnetron cathode surface (6×8×0.5 mm3) Ta mask

Irradiation conditions Experimental Irradiation conditions Pdiv, Pa Flux, D/m2s Ei, eV* C, at.% Tsur, K ITER divertor [1] 4 ~1×1023-24 ≤100 ? 520 & 850 JET [2] ≤20 380-520 PISCES-B [3] ~1×1022 100 0.5; 1; 1.4 350-1200 Ion source [4] ~4×10-5 ~6×1019 500 1 300, 500 Magnetron [5] ~1×1021 400 ≤4 363-773 [1] G.Federici et al., J. Nucl. Mater. 313-316 (2003) 11-22 [2] J.P. Coad, et.al., J. Nucl. Mater. 313-316 (2003) 419-423 [3] F.C. Sze et.al., J. Nucl. Mater. 266-269 (1999) 1212-1218 [4] M.Poon, et al., J. Nucl. Mater. 337-339 (2005) 629-633 [5] This work

Irradiation conditions Experimental Irradiation conditions Pdiv, Pa Flux, D/m2s Ei*, eV At.% C Tsurface, K ITER [1] 4 ~1×1023-24 ≤100 ? 520 & 850 JET [2] ≤20 380-520 PISCES-B [3] ~2×1022 100 0.5; 1; 1.4 350-1200 Ion source [4] ~4×10-5 ~6×1019 500 1 300, 500 Magnetron [5] ~1×1021 400 ≤4 363-773 *Ei≈ZUsheath + 2Ti ≈ Te(3Z+1), Usheath≈3Te/e0 Ti≈Te/2 Ei- ion impact energy Z- charge state of the impacting ion Usheath- sheath potential Te& Ti – temperatures of electrons and ions [1] G.Federici et al., J. Nucl. Mater. 313-316 (2003) 11-22 [2] J.P. Coad, et.al., J. Nucl. Mater. 313-316 (2003) 419-423 [3] F.C. Sze et.al., J. Nucl. Mater. 266-269 (1999) 1212-1218 [4] M.Poon, et al., J. Nucl. Mater. 337-339 (2005) 629-633 [5] This work

Irradiation conditions Experimental Irradiation conditions Pdiv, Pa Flux, D/m2s Ei, eV At.% C Tsurface, K ITER [1] 4 ~1×1023-24 ≤100 ? 520 & 850 JET [2] ≤20 380-520 PISCES-B [3] ~1×1022 100 0.5; 1; 1.4 350-1200 Ion source [4] ~4×10-5 ~6×1019 500 1 300, 500 Magnetron [5] ~1×1021 400 ≤4 363-773 [1] G.Federici et al., J. Nucl. Mater. 313-316 (2003) 11-22 [2] J.P. Coad, et.al., J. Nucl. Mater. 313-316 (2003) 419-423 [3] F.C. Sze et.al., J. Nucl. Mater. 266-269 (1999) 1212-1218 [4] M.Poon, et al., J. Nucl. Mater. 337-339 (2005) 629-633 [5] This work

W erosion as function of Te and C impurity concentration* Introduction Erosion of tungsten by carbon W erosion as function of Te and C impurity concentration* *K. Schmid, J. Roth, J. Nucl. Mater. 313-316 (2003) 302-310

Experimental conditions D ion energy, eV Time, sec Flux, (m-2s-1) Fluence, Erosion, nm/sec 200 1800 1× 1019 2× 1024 ≤1 nm/sec Ei=400 eV Rp, nm (SRIM 2003) Kerosion Kdiffusion (m2s-1) Conclusion R D2+→W 2 - 1× 10-9 * No limits for diffusion 1 C+→W 0.1 1× 10-19 ** Thin C-W mixed layer * T=770 K **T=1030 K [1] R. Fraunfelder, J. Vac. Sci.Technol. 6 (1969) 388 [2] K. Schmid, J. Roth, J. Nucl. Mater. 313-316 (2003) 302-310

Erosion of tungsten Experimental Estimation: V erosion=1.5-2 μm/30 min ~1 nm/s ~6×1019 at.W/m2s Initial surface Closed area Eroded surface Plasma-impact area Interference fringes (Linnik micro-interferometer)

Erosion of tungsten by carbon Experimental Erosion of tungsten by carbon Sputtering yields curves for fusion relevant materials for irradiation by deuterium* (Physical sputtering yields for some ion mass are plotted in the case of W) *G.F. Matthews, J. Nucl. Mater. 337-339 (2005) 1-9

Experimental conditions D ion energy, eV Time, sec Flux, (m-2s-1) Fluence, Erosion, W at./m2s 200 1800 1× 1019 2× 1024 ≤6×1019 Ei=400 eV Rp, nm (SRIM 2003) Kerosion Kdiffusion (m2s-1) Conclusion R D2+→W 2 - 1× 10-9 * No limits for diffusion 1 C+→W 0.1 1× 10-19 ** Thin C-W mixed layer * T=770 K **T=1030 K 1%C in plasma: 1018 C/m2s→ 1017 W/m2s [1] R. Fraunfelder, J. Vac. Sci.Technol. 6 (1969) 388 [2] K. Schmid, J. Roth, J. Nucl. Mater. 313-316 (2003) 302-310

The threshold energies of sputtering Experimental The threshold energies of sputtering Irradiation T, K Eth, eV Kerosion at Ei= 400 eV C+, N+, O+ →W 293 ~35 ~ 0.1 Ta+ →W ~2 D2+→W 160-200 ≤0.0001 D2+→WO 65 D2+→WC 150 ≤ 0.0001

DEUTERIUM RETENTION IN TUNGSTEN AT HIGH LEVEL OF SURFACE EROSION Experimental DEUTERIUM RETENTION IN TUNGSTEN AT HIGH LEVEL OF SURFACE EROSION

Experimental conditions D ion energy, eV Time, sec Flux, (m-2s-1) Fluence, Erosion, W at./m2sec Temperature, K 200 1800 1× 1019 2× 1024 ~6×1019 363-773 Ei=400 eV Rp, nm (SRIM 2003) Kerosion Kdiffusion (m2s-1) Conclusion R D2+→W 2 - ~ 1× 10-9 * No limits for diffusion 1 C+→W 0.1 ~ 1× 10-19 ** Thin C-W mixed layer * T= 773 K **T=1030 K [1] R. Fraunfelder, J. Vac. Sci.Technol. 6 (1969) 388 [2] K. Schmid, J. Roth, J. Nucl. Mater. 313-316 (2003) 302-310

Diffusion coefficient for C in a wide concentration range for C in W* Introduction Diffusion coefficient for C in a wide concentration range for C in W* *K. Schmid, J. Roth, J. Nucl. Mater. 313-316 (2003) 302-310

Experimental conditions D ion energy, eV Time, sec Flux, (m-2s-1) Fluence, Erosion, W at./m2sec Temperature, K 200 1800 1× 1019 2× 1024 ~6×1019 363-773 Ei=400 eV Rp, nm (SRIM 2003) Kerosion Kdiffusion (m2s-1) Conclusion R D2+→W 2 - ~ 1× 10-9 * No limits for diffusion 1 C+→W 0.1 ~ 1× 10-19 ** Thin C-W mixed layer * T= 773 K **T=1030 K [1] R. Fraunfelder, J. Vac. Sci.Technol. 6 (1969) 388 [2] K. Schmid, J. Roth, J. Nucl. Mater. 313-316 (2003) 302-310

Experimental conditions D ion energy, eV Time, sec Flux, (m-2s-1) Fluence, Erosion, W at./m2sec Temperature, K 200 1800 1× 1019 2× 1024 ~6×1019 363-773 Ei=400 eV Rp, nm (SRIM 2003) Kerosion Kdiffusion (m2s-1) Conclusion R D2+→W 2 - ~ 1× 10-9 * No limits for diffusion 1 C+→W 0.1 ~ 1× 10-19 ** Thin C-W mixed layer * T= 773 K **T=1030 K [1] R. Fraunfelder, J. Vac. Sci.Technol. 6 (1969) 388 [2] K. Schmid, J. Roth, J. Nucl. Mater. 313-316 (2003) 302-310

H diffusivity vs temperature for W Experimental H diffusivity vs temperature for W 773 K E. Serra, G. Benamati, O.V. Ogorodnikova, J. Nucl. Mater. 255 (1998) 105-115

H diffusivity vs temperature for W Experimental H diffusivity vs temperature for W 773 K R. Fraunfelder, J. Vac. Sci.Technol. 6 (1969) 388

H diffusivity vs temperature for W Experimental H diffusivity vs temperature for W 773 K A.P. Zakharov, V.M. Sharapov, E.I. Evko, Soviet Mater. Sci. 9 (1973) 149

Experimental conditions D ion energy, eV Time, sec Flux, (m-2s-1) Fluence, Erosion, W at./m2sec Temperature, K 200 1800 1× 1019 2× 1024 ~6×1019 363-773 Ei=400 eV Rp, nm (SRIM 2003) Kerosion Kdiffusion (m2s-1) Conclusion R D2+→W 2 - ~ 1× 10-9 * No limits for diffusion 1 C+→W 0.1 ~ 1× 10-19 ** Thin C-W mixed layer * T= 773 K **T=1030 K Kdiffusion ~ 1× 10-9 m2s-1 →h=(Dt)1/2~ 1mm [1] R. Fraunfelder, J. Vac. Sci.Technol. 6 (1969) 388 [2] K. Schmid, J. Roth, J. Nucl. Mater. 313-316 (2003) 302-310

Methods of the analysis Experimental Methods of the analysis C/D-plasma irradiation: planar DC magnetron Eions (D2+; C+; N+, O+, Ta+)= 400 eV Flux=1×1019 D/m2s, 30 min Mechanically & electrochemically polished Hot-rolled tungsten foil (99.0 at.%) Size = 6×8×0.5 mm3 Profiles & chemical state of impurities: X-ray Photoelectron Spectroscopy (XPS) Depth profiles of C, O, W 3 kev Ar+, 2×2 mm2, 0.4 μm Deuterium profiles: Nuclear Reaction Analysis (NRA): 0 - 0.5 μm: D(3He,α)H reaction 0.5 - 7 μm: D(3He,p)4He reaction Deuterium retention: Thermal Desorption Spectroscopy (TDS) D2 & HD molecules were detected by QMS Temperature range: 300-1100 K Heating rate = 3.2 K/s

Results & Discussion NRA & TDS data m 6

Results & Discussion NRA data 3

Results & Discussion XPS data (3 keV Ar at fluence=1×1019 Ar/m2 )

Results & Discussion NRA data 3

Blistering in the temperature range 363-653 K Results & Discussion Blistering in the temperature range 363-653 K Pre-TDS; T=563 K at fluence=2× 1024 D/m2

Results & Discussion TDS data

Results & Discussion TDS data T1=650-710 K T2=900-1000 K

Results & Discussion TDS modeling: contributions from 1.4 eV traps and blisters (TMAP7) at 563 K

Three types of traps can explain our TDS data Near-surface layer (≤ 0.5 m): 1.4 eV traps= one D in vacancy 2. Sub-surface layer (≤ 7 m): 1.8-2.1 eV= D chemisorption on blister/bubble wall + D2 molecules inside 3. Bulk (up to 1 mm): 1.8-2.1 eV traps= D chemisorption on inner walls of small cavity and voids

Fitting of TDS data are in progress

Results & Discussion NRA & TDS data m Bulk trapping !

General experimental results Results & Discussion General experimental results Strong W sputtering Blistering Enhanced D retention NRA ≈ TDS from 363 to 563 K NRA<<TDS from 563 to 773 K

Conclusions General conclusions Blistering & enhanced D retention even at strong W surface sputtering are revealed Irradiation temperature of 550-600 K corresponds to transition from a near/sub-surface to a bulk D trapping in polycrystalline W foils Carbon influence: enhanced W erosion; W2C barrier layer formation & increased D retention

Conclusions General conclusions Blistering & enhanced D retention even at strong W surface sputtering are revealed Irradiation temperature of 550-600 K corresponds to transition from a near-surface to a bulk D trapping in polycrystalline W Carbon influence: enhanced W erosion; W2C barrier layer formation & enhanced D retention

Conclusions General conclusions Blistering & enhanced D retention even at strong W surface sputtering are revealed Irradiation temperature of 550-600 K corresponds to transition from a near-surface to a bulk D trapping in polycrystalline W Carbon influence: enhanced W erosion; W2C barrier layer formation & enhanced bulk D retention

Scheme of plasma-surface interaction No erosion D-C plasma D  stop diffusion & retention 4 nm W a-C:H film Carbon-modified layer (W2C, WC)

Scheme of plasma-surface interaction Erosion rate  1 nm/s D-C plasma  no limits for diffusion  high retention level in bulk D 2 m 1 nm W a-C:H film Carbon-modified layer (W2C, WC)

To be or not to be for D retention in W strongly depends on irradiation parameters and surface conditions

Thank you for attention