Chapter 4 Arrangement of Electrons in Atoms 4.1 The Development of a New Atomic Model.

Slides:



Advertisements
Similar presentations
Arrangement of Electrons in Atoms
Advertisements

Chapter 4 Arrangement of Electrons in Atoms
Electrons. Wave model – scientist say that light travels in the form of a wave.
CH 4 NOTES HOW ELECTRONS ARE ARRANGED. ELECTROMAGNETIC SPECTRUM Includes : –Gamma rays –Xrays –Ultraviolet –Visible –Infrared –Microwaves –Radio waves.
The Development of a New Atomic Model.
Electrons and Quantum Mechanics
Chapter 4: Arrangement of Electrons in Atoms
Chapter 4 Electrons In Atoms.
Chapter 4 Arrangement of Electrons in Atoms
Chapter 4 Arrangement of Electrons in Atoms. The new atomic model Rutherford’s model of the atom was an improvement, but it was incomplete. It did not.
Concept #4 “Electrons in the Atom” Honors Chemistry 1.
Chemistry Chapter 4 Arrangement of Electrons in Atoms
1 Ch 4 Electron Energies. 2 Electromagnetic Spectrum Electromagnetic radiation is a form of energy that exhibits wave-like behavior as it travels though.
Chapter 4 Arrangement of Electrons in Atoms. I. The Development of a New Atomic Model H Electromagnetic Radiation: H Electromagnetic Spectrum: H Electromagnetic.
Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu Section 1 The Development of a New Atomic Model Properties of Light.
Chapter 4: Arrangement of Electrons in Atoms Chemistry.
CHAPTER 5: ELECTRONS IN ATOMS
Chapter 4 Electron Configurations. Early thoughts Much understanding of electron behavior comes from studies of how light interacts with matter. Early.
Arrangement of Electrons in Atoms Chapter 4. Properties of Light Electromagnetic Radiation- which is a form of energy that exhibits wavelength behavior.
Chapter 5 : Electrons in Atoms. Problems with Rutherford’s Model Chlorine # 17 Reactive Potassium # 19 Very reactive Argon # 18 Not reactive.
Electrons in Atoms Chapter 5 General Chemistry. Objectives Understand that matter has properties of both particles and waves. Describe the electromagnetic.
Chapter 5: Electrons In Atoms. Wave Nature of Light Electromagnetic Radiation – form of energy that exhibits wavelike behaviors as it travels through.
CHAPTER 4: Section 1 Arrangement of Electrons in Atoms
Chapter 11 - Arrangement of Electrons in Atoms
Chapter 4 Arrangement of Electrons in Atoms. 4-1 The Development of the New Atomic Model Rutherford’s atomic model – nucleus surrounded by fast- moving.
Arrangement of Electrons in Atoms Chapter 4. Section 4.1 Wave-Particle Nature of Light 1. Electromagnetic Radiation -a form of energy that exhibits wavelike.
Arrangement of Electrons in Atoms
Arrangement of Electrons in Atoms
Light is an electromagnetic wave EM wave- a form of energy that exhibits wavelike behavior as it travels through space All the forms of EM radiation form.
Mullis Chemistry Holt Ch.41 Arrangement of Electrons in Atoms Principles of electromagnetic radiation led to Bohr’s model of the atom. Electron location.
Light is an electromagnetic wave EM wave- a form of energy that exhibits wavelike behavior as it travels through space.
Chapter 4 ARRANGEMENT OF ELECTRONS IN ATOMS. Section 1 The Development of a New Atomic Model Properties of Light The Wave Description of Light Electromagnetic.
Chemistry Unit 2: the 2 nd half! Electrons and their Properties.
Enriched Chemistry Chapter 4 – Arrangement of Electrons in Atoms
Light and Energy Electromagnetic Radiation is a form of energy that emits wave-like behavior as it travels through space. Examples: Visible Light Microwaves.
Section 1 The Development of a New Atomic Model Properties of Light The Wave Description of Light Electromagnetic radiation is a form of energy that exhibits.
Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu Table of Contents Chapter 4 Arrangement of Electrons in Atoms Section.
Chapter 5 Review. Wave Nature of Light Wavelength- Wavelength- The distance between two consecutive peaks or troughs. Frequency- Frequency- The number.
Electrons in Atoms Chapter Wave Nature of Light  Electromagnetic Radiation is a form of energy that exhibits wavelike behavior as it travels through.
Chapter 4: Arrangement of Electrons in Atoms by Chris Baldwin, Kayla Cooper, Melissa Thomas, and Taylor Washington.
Chapter 11 Notes Electrons in Atoms: Modern Atomic Theory.
Properties of Light Electromagenetic Spectrum. Electromagnetic Spectrum Types of electromagnetic radiation -the range containing all of the possible frequencies.
The Development of A New Atomic Model
Unit 4 Energy and the Quantum Theory. I.Radiant Energy Light – electrons are understood by comparing to light 1. radiant energy 2. travels through space.
Bohr’s Model Rutherford’s model didn’t explain the arrangement of electrons around the nucleus.
Chapter 4 © Houghton Mifflin Harcourt Publishing Company Section 1 The Development of a New Atomic Model Properties of Light The Wave Description of Light.
Chapter 5.  Energy transmitted from one place to another by light in the form of waves  3 properties of a wave;  Wavelength  Frequency  Speed.
Light Light is a kind of electromagnetic radiation, which is a from of energy that exhibits wavelike behavior as it travels through space. Other forms.
CHAPTER 4 CHEMISTRY. PROPERTIES OF LIGHT (P91-93) Originally thought to be a wave It is one type of ELECTROMAGNETIC RADIATION (exhibits wavelike behavior.
Chapter 4 Electrons In Atoms.
Quiz Review.
Arrangement of Electrons in Atoms
Electrons In Atoms.
Electron Configuration Orbitals
Chapter 4 The Wave Description of Light
Electromagnetic spectrum
Arrangement of electrons
The Quantum Model Chapter 4.
Electrons in Atoms Chapter 5.
Chapter 4 Arrangement of Electrons in Atoms
Chapter 4 September 21, 2011.
Arrangement of Electrons in Atoms
Arrangement of Electrons in Atoms
Electromagnetic spectrum
Arrangement of Electrons in Atoms
Arrangement of Electrons in Atoms
Chapter 4:Arrangement of Electrons in atoms
Properties of Light.
Chapter 4 Arrangement in Electrons in Atoms
Presentation transcript:

Chapter 4 Arrangement of Electrons in Atoms 4.1 The Development of a New Atomic Model

Properties of Light Electromagnetic Radiation: EM radiation are forms of energy which move through space as waves There are many different types of EM waves visible light x-rays ultraviolet light infrared light radio waves Waves: Not Just For The Beach Anymore!

EM Waves Move at speed of light: 3.00 x 10 8 m/s Speed is equal to the frequency times the wavelength c = v Frequency (v) is the number of waves passing a given point in one second Wavelength ( ) is the distance between peaks of adjacent waves Speed of light is a constant, so v is also a constant; v and must be inversely proportional

Light and Energy: The Photoelectric Effect Electrons are emitted from a metal when light shines on the metal Incoming EM radiation from the left ejects electrons, depicted as flying off to the right, from a substance. Radiant energy is transferred in units (or quanta) of energy called photons (Max Planck)

p+p+ nono e-e- Photoelectric Effect When a specific or quantized amount of energy is exposed to the atom, the electron jumps from its “ground” or original state to an “excited” state energy absorption spectrum ground state e -

p+p+ nono e-e- Photoelectric Effect When the “excited” electron returns to lower energy levels, it releases energy in the form of light energy photon emission spectrum! travels at the speed of light (3.00 x 10 8 m/s) excited state e -

A photon is a particle of energy having a rest mass of zero and carrying a quantum of energy A quantum is the minimum amount of energy that can be lost or gained by an atom Energy of a photon is directly proportional to the frequency of radiation E = hv (h is Planck’s constant, x J * sec)

Electromagnetic Spectrum Wavelength increases→ Frequency decreases→ Energy decreases→

Electromagnetic Spectrum

Electrons as Waves and Particles Electrons have wavelike properties Consider the electron as a wave confined to a space that can have only certain frequencies

Wave-Particle Duality Energy travels through space as waves, but can be thought of as a stream of particles (Einstein) Each particle has 1 quantum of energy.

Line Spectrums Ground State:The lowest energy state of an atom Excited State:A state in which an atom has a higher potential energy than in its ground state example: Neon lights

Emissions Spectrum Bright line spectrum: Light is given off by excited atoms as they return to lower energy states Light is given off in very definite wavelengths A spectroscope reveals lines of particular colors- light passed through a prism; specific frequencies given off.

The Hydrogen Line Spectrum Definite frequency Definite wavelength

p+p+ nono e-e- Niels Bohr Bohr Model Energy levels Electrons circle around the nucleus on their energy level

The Bohr Model of the Atom Electron Orbits, or Energy Levels Electrons can circle the nucleus only in allowed paths or orbits The energy of the electron is greater when it is in orbits farther from the nucleus The atom achieves the ground state when atoms occupy the closest possible positions around the nucleus Electromagnetic radiation is emitted when electrons move closer to the nucleus.

The Bohr Atomic Model

Energy transitions Energies of atoms are fixed and definite quantities Energy transitions occur in jumps of discrete amounts of energy Electrons only lose energy when they move to a lower energy state

Shortcomings of the Bohr Model Doesn't work for atoms larger than hydrogen (more than one electron) Doesn't explain chemical behavior

Quantum Model of the Atom

The Heisenberg Uncertainty Principle Werner Heisenberg "It is impossible to determine simultaneously both the position and velocity of an electron or any other particle.”

Quantum Theory Quantum theory describes mathematically the wave properties of electrons and other very small particles Electrons do not move around the nucleus in "planetary orbits" ????????

specify the properties of atomic orbitals and the properties of the electrons in orbitals: Principal Quantum Number (n) Angular Momentum Quantum Number (l) (shape : s,p,d,f) Magnetic Quantum Number (m) Spin Quantum Number Quantum Numbers

p+p+ nono e-e- Energy levels, n n = 1 n = 2 n = 3 n = 4 Indicates the main energy levels occupied by the electron Principal Quantum Number (n)

Angular Momentum Quantum Number (l) Indicates the shape of the orbital Shapes are designated s, p, d, f S shape is spherical P shape is a dumbbell, or figure 8 Click Here! Click Here!

Magnetic Quantum Number (m) The orientation of the orbital around the nucleus Spin Quantum Number Indicates the fundamental spin states of an electron in an orbital A single orbital can contain only two electrons, which must have opposite spins

Diagrams of the Orbitals

Writing Electron Configurations Rules: Aufbau Principle An electron occupies the lowest-energy orbital that can receive it Hund's Rule Orbitals of equal energy are each occupied by one electron before any orbital is occupied by a second electron, and all electrons in singly occupied orbitals must have the same spin Pauli Exclusion Principle No two electrons in the same atom can have the same set of four quantum numbers

Writing Electron Configurations Hund's Rule Orbitals of equal energy are each occupied by one electron before any orbital is occupied by a second electron, and all electrons in singly occupied orbitals must have the same spin 1 st e-2 nd e- 3 rd e-4 th e-

Configuration Notation (2 of 3) The number of electrons in a sublevel is indicated by adding a superscript to the sublevel designation Hydrogen = 1s 1 Helium = 1s 2 Lithium = 1s 2 2s 1 Aufbau Principle An electron occupies the lowest-energy orbital that can receive it (Always start with n = 1 and work your way up)

Orbital Filling Order 1s 2s2p 3s 3p3d 4s 4p4d 4f 5s 5p5d5f 6s6p 6d 7s7p START FINISH

Noble Gas Notation (3 of 3) The configuration begins with the preceding noble gas’s symbol in brackets and is followed by the rest of the configuration for the particular element. [Ne] 3s 2 3p 5

Terms Highest occupied energy level: The electron containing energy level with the highest principal quantum number Inner shell electrons: Electrons that are not in the highest energy level Octet Rule: Highest energy level s and p electrons are filled (8 electrons)