Chapter 3 Part II How are the electrons arranged around the nucleus?

Slides:



Advertisements
Similar presentations
Arrangement of the Electrons Chapter 4 (reg.)
Advertisements

Chapter 3 Part II How are the electrons arranged around the nucleus?
Do Now: Take out your vocab 1. What is light?
Electrons and Quantum Mechanics
Chapter 4: Arrangement of Electrons in Atoms
Electronic Structure of Atoms Chapter 6 BLB 12 th.
ELECTRONS IN THE ATOM UNIT 4.
Chemistry Chapter 5.
Electron Properties and Arrangement Chapter 5 Objectives: Identify and connect the properties of light with electrons. Observe how electrons move in atoms.
Chapter 10: Modern atomic theory Chemistry 1020: Interpretive chemistry Andy Aspaas, Instructor.
Concept #4 “Electrons in the Atom” Honors Chemistry 1.
Day 1. Move like planets around the sun.  In specific circular paths, or orbits, at different levels.  An amount of fixed energy separates one level.
Chapter 13 Electrons in Atoms
Chapter 4: Arrangement of Electrons in Atoms Chemistry.
Electrons in Atoms. Models of the Atom Atoms are the smallest indivisible part of an element—who stated this? John Dalton (thanks to Democritus) The atom.
Chapter 4 Electron Configurations. Early thoughts Much understanding of electron behavior comes from studies of how light interacts with matter. Early.
Electron Configuration
Chapter 4 Arrangement of Electrons in Atoms 4.1 The Development of a New Atomic Model.
CHAPTER 4 Electrons in Atoms.
Electronic Configurations of Atoms
Electrons in Atoms Chapter 5. Duality of Light Einstein proved that matter and energy are related E = mc 2 Einstein proved that matter and energy are.
Electrons in Atoms. Models of the Atom – A History John Dalton John Dalton atom was solid, indivisible mass atom was solid, indivisible mass J.J. Thomson.
Electrons in Atoms Chapter 5 General Chemistry. Objectives Understand that matter has properties of both particles and waves. Describe the electromagnetic.
Chapter 5: Electrons In Atoms. Wave Nature of Light Electromagnetic Radiation – form of energy that exhibits wavelike behaviors as it travels through.
Chapter 4 Arrangement of Electrons in Atoms. 4-1 The Development of the New Atomic Model Rutherford’s atomic model – nucleus surrounded by fast- moving.
Quantum Theory and the Electronic Structure of Atoms Chapter 7 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Chapter 4 - Electrons. Properties of Light What is light? A form of electromagnetic radiation: energy that exhibits wavelike behavior as it travels through.
CHAPTER 12 ELECTRONS IN ATOMS BRODERSEN HONORS CHEM 2013/14.
Ernest Rutherford’s Model l Discovered dense positive piece at the center of the atom- “nucleus” l Electrons would surround and move around it, like planets.
1 Electronic Structure of Atoms Chapter 6 2 The Wave Nature of Light All waves have a characteristic wavelength,, and amplitude, A. The frequency,, of.
Electrons in atoms Chapter5 Waves Light travels as both Waves and Packets of energy. Light is a form of Electromagnetic Radiation. –EM Radiation has.
End Show Slide 1 of 20 Ch. 5: Models of the Atom What you need to know: Chapter 5 Timeline pp (theory and people) Definitions: quantum mechanical.
Chapter 5 Electrons in Atoms The Bohr Model An electron is found only in specific circular paths, or orbits, around the nucleus. Each orbit has a fixed.
Enriched Chemistry Chapter 4 – Arrangement of Electrons in Atoms
Light and Energy Electromagnetic Radiation is a form of energy that emits wave-like behavior as it travels through space. Examples: Visible Light Microwaves.
Chapter 61 Electronic Structure of Atoms Chapter 6.
Chapter 5 Review. Wave Nature of Light Wavelength- Wavelength- The distance between two consecutive peaks or troughs. Frequency- Frequency- The number.
Electrons in Atoms Chapter Wave Nature of Light  Electromagnetic Radiation is a form of energy that exhibits wavelike behavior as it travels through.
Chapter 5 - Electrons in the Atom What is an atom?
Chapter 11 Notes Electrons in Atoms: Modern Atomic Theory.
Properties of Light Electromagenetic Spectrum. Electromagnetic Spectrum Types of electromagnetic radiation -the range containing all of the possible frequencies.
The Development of A New Atomic Model
Unit 4 Energy and the Quantum Theory. I.Radiant Energy Light – electrons are understood by comparing to light 1. radiant energy 2. travels through space.
Models, Waves, and Light Models of the Atom Many different models: – Dalton-billiard ball model (1803) – Thompson – plum-pudding model (1897) – Rutherford.
Chemistry Physics and the Quantum Mechanical Model.
1 ***Green indicates test items*** Modern Atomic Theory ***Green indicates test items***
E LECTRONS IN A TOMS Chapter 5. L IGHT AND Q UANTIZED E NERGY Nuclear atom and unanswered questions Scientists found Rutherford’s nuclear atomic model.
Chapter 5 Electrons in Atoms. Wave Nature of Light Wavelength (λ) – shortest distance between equivalent points on a continuous wave (unit: m or nm) Ex:
Chapter 4 Electron Configurations. Waves Today scientists recognize light has properties of waves and particles Waves: light is electromagnetic radiation.
Light Light is a kind of electromagnetic radiation, which is a from of energy that exhibits wavelike behavior as it travels through space. Other forms.
CHAPTER 4 CHEMISTRY. PROPERTIES OF LIGHT (P91-93) Originally thought to be a wave It is one type of ELECTROMAGNETIC RADIATION (exhibits wavelike behavior.
Chapter 7 Atomic Structure.
Chapter 4 Spectroscopy & Arrangement of Electrons(e - )
Electrons in Atoms Big Idea #2 Electrons and the Structure of Atoms
Starter S-30 How many electrons are found in Carbon Nitrogen Argon
Arrangement of Electrons in Atoms
LT1: Electron Arrangement (Ch. 5)
5-1 Quantum Theory of the atom
LT1: Electron Arrangement (Ch. 5)
Chapter 5 Notes Electrons.
Electrons in Atoms.
Quantum Theory.
Electromagnetic spectrum
Electrons in Atoms Chapter 5.
Quantum Theory and the Atom
“Electrons in the Atom”
Electrons in Atoms Chapter 5.
Electromagnetic spectrum
Electron Configuration
Presentation transcript:

Chapter 3 Part II How are the electrons arranged around the nucleus?

Normal or Rest Position Crest Wavelength Amplitude WavelengthTrough 3

Parts of a Wave

Height greater A.Amplitude: Height of the wave. The higher the wave the greater the intensity. crestcrest troughtrough B.Wavelength: ( λ, “lambda”) in nanometers (1 x m) measured from crest to crest or from trough to trough. number cycles/second Hertz C. Frequency: ( ν, “nu”) The number of times a wave passes a fixed point. Measured in cycles/second (1/s) 1 cycle/second = Hertz (Hz) ex) Radio FM 93.3 megahertz (MHz) is 93.3 x 10 6 cycles/sec.

Visible Light Radar Microwaves Infrared Radio/TV Ultraviolet X-Rays Gamma Rays Low Long High Short Red Orange Yellow Green BlueIndigoViolet Energy Low High LIGHT

The Electromagnetic Spectrum

Speed of Light D. (c) 3.0 x 10 8 m/s or 186,000 miles/sec. The relationship between wavelength and frequency can be shown with the following equations: or this is an indirect relationship. If λ  then ν .

Quantum Theory A.Planck’s Hypothesis: (Max Planck 1900) 1. An object absorbs or emits light in little packet or bundle called a quantum (quanta –plural). 2. Energies are quantized. (Think steps not a ramp.) 3. Equation relating energy (E) to frequency ( ν, nu) (h= Planck’s Constant) E = h This is a direct relationship, as ν , E  e-e- e-e- X e-e- e-e-

Light (Electromagnetic Radiation) 1. A quantum of light is called a photon. 2. Light travels through space in waves. 3. Light acts like a particle when it interacts with matter. 4. This shows the Dual Nature of Light.

A photon checks into a hotel and is asked if he needs any help with his luggage. He says, "No, I'm traveling light."

Double Slit Experiment Double Slit Experiment Video This Experiment Proves the Dual Nature of Light – Photons of Light travel through spaces in waves, but act like particles when they interact with matter.

3. The Atom wavelengths A. Atomic Emission Line Spectra: contains only certain colors or wavelengths ( ) of light. elementline spectrum 1. Every element has its own line spectrum (fingerprint).

Continuous Spectrum – White Light Line Spectrum – Excited Elements Line Emission Spectra of Selected Elements

Gas Discharge Tubes Electricity is added to the gas which causes the electrons to jump to a higher or excited state. They immediately fall back to the ground state and give off particular wavelengths of light. We see a blending of wavelengths without the spectroscopes.

Spectroscope Uses a diffraction grating to diffract the light into particular wavelengths of light.

White Light gives off a Continuous Spectrum a blending of every possible wavelength

A Line Spectrum results from excited elements - as electrons of an element gain energy and rise to an excited state they then fall back to their ground state in the same pattern producing the same energy drop each time which we see as individual wavelengths of light.

Atomic Spectra Hydrogen Lithium Mercury Helium Although Bohr’s atomic model explained the line spectra of hydrogen, it failed for heavier elements.

B. Bohr Model of Hydrogen: (1911) 1. Bohr said the energy of an electron was quantized (only certain orbits that represented different amounts of energy.) 2. Bohr labeled each energy level with a quantum number (n). 3. n=1 lowest level or ground state. 4. When electrons absorb energy they jump to a higher (excited) state. n=2 n=3 n=4 n=5 n=6 n=7 5. Radiation (light) is emitted when an electron falls back from a higher level to a lower level.

Electrons release energy as they fall back to a lower energy level

Excited Atoms Emit Photons of Light:

Hydrogen atoms absorbing Energy

Hydrogen atoms emitting Energy as a Photon of Light

Electrons absorb energy to rise to a higher or excited state and emit energy in the form of a photon of light as they fall back to their ground states.

Path of an excited electron as it “falls” back to the Ground State When electrons gain energy, they jump to a higher energy level (excited state). Electrons are not stable at the excited state and will immediately fall back to a lower level or ground state. As they fall, they emit electromagnetic radiation. Depending on how far they fall determines the type of radiation (light) released.

electrons fall to n = 1 and give off ultraviolet light. electrons fall to n = 2 and give off visible light. electrons fall to n = 3 and give off infrared light. Hydrogen Atom

Ultraviolet Light Visible Light Infrared Light

Werner Heisenberg: (1927) 1.Heisenberg’s Uncertainty Principle : states positionmomentum the position and momentum (speed, direction & mass) of a moving object cannot simultaneously be measured and known exactly. future 2. You cannot predict future locations of particles. 3. He found a problem with the Bohr Atom Bohr Atom - no way to observe or electron measure the orbit of an electron.

4. Quantum Mechanics A. Quantum Mechanical Model of the atom combines previous ideas and treats the wavequantized energy electron like a wave that has quantized energy. position Impossible to state the exact position or momentum momentum of an electron, but you can state a probability probability of where the electron is located.

B. Electron Density Where the density of an electron cloud is high high there is a high probability that is where the electron is located. If the electron low density is low then low there is a low probability.

nucleuselectron energy C. Atomic Orbitals - region around the nucleus where an electron with a given energy is likely to be found (not the same as Bohr’s orbits!) shapessizes 1.Orbitals have characteristic shapes, sizes, & energies energies. notelectron moves 2. Orbitals do not describe how the electron moves. 3.The drawing of an orbital represents the 3-dimentional surface 3-dimentional surface within which the electron 90% is found 90% of the time.

4. Sublevels can have 4 different shapes s – orbital spherical

1s, 2s & 3s orbitals Superimposed on one another

Electron-Cloud Models

p-orbital – dumbbell shaped

p-orbital - dumbbell shaped

d-orbital - double dumbbell or fan blades

s,p and d orbitals For a more complete representation and presentation of atomic orbitals go to s orbital p orbitals d orbitals

Models of d-orbitals

f-orbital – more complex!

Quantum Numbers - Finding an address for each electron: 1) “state” Principal Quantum Number (n) or the energy level n=1 to n=7 energy level ranges from n=1 to n=7 shape 2) “city” Sublevel shape either s, p, d,or f. orientation 3) “street” Orbital The orientation in space x,y,z axis ex) x,y,z axis cwccw 4) “house” Spin The cw or ccw motion of electrons.

1s, 2s,2p and 3s orbitals superimposed on each other

Model of s and p Orbitals Together Video of Atomic Orbitals of Scandium

equals 2. The number of Sublevels in an energy level equals the Principal Quantum Number (n). odd 3. Orbital: There are always an odd number of orbitals. 1 s-sublevel has 1 orbital 3 p-sublevel has 3 orbitals 5 d-sublevel has 5 orbitals 7 f -sublevel has 7 orbitals largerOrbitals in higher principle levels get larger. 2 A max of 2 electrons fit in each orbital.

Electron Spin opposite a.Two electrons in each orbital have opposite clockwisecounterclockwise spins. (clockwise and counterclockwise) b. The opposite spin is written:  or ___

c. Pauli Exclusion Principle: 2 1. Each orbital can only hold 2 electrons. opposite 2. The electrons must have opposite spins. 2 s-sublevel = max 2 electrons 6 p-sublevel = max 6 electrons 10 d-sublevel = max 10 electrons 14 f-sublevel = max 14 electrons ↑↑↑↑↑↑↓ incorrect: ↑↑↑ incorrect: ↑↑ correct: ↑↓

d. Hund’s Rule: spread out pair upElectrons will spread out among the orbitals before they pair up. incorrect ↑↓ ↑ __ correct ↑ ↑ ↑ _

E. Electron Configurations: orbitals energy 1. Shows the distribution of electrons among the orbitals. Describes where the electrons are found & what energy they possess. lowest 2. The Aufbau Principle: electrons are added up one at a time to the lowest energy orbital.

Aufbau Diagram/ Diagonal Rule

Electron Configuration Examples: Ex) electron configuration for Na: 1s 2 2s 2 2p 6 3s 1 Ex) orbital filling box diagram for Na:

3. Electron Dot Diagrams: symbol Write the symbol for the element. Place dots around the symbol to represent the valence s & p valence s & p electrons only. df Do NOT include d & f orbitals in diagram. p orbital electronss orbital electrons

Electron Configuration

Aufbau Diagram Order

Aufbau Diagram

Visualizing The Electron~ Model of Bohr Atom - Electron Movement Line Emission Spectra of Selected Elements

The Aufbau Principle (Diagonal Rule) 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 4d 10 4f 14 5s 2 5p 6 5d 10 5f 14 6s 2 6p 6 6d 10 6f 14 7s 2 7p 6 7d 10 7f 14

Increasing energy 1s 2s 3s 4s 5s 6s 7s 2p 3p 4p 5p 6p 3d 4d 5d 7p 6d 4f 5f Pauli Exclusion Principle: No more than 2 e- are put in each orbital and they must have opposite spin. Hund’s Rule: electrons spread out among equal energy orbitals in a sublevel (like charges repel) Aufbau Principle: Electrons fill lowest energy levels first (n=1)

Electron Blocks on the Periodic Table

Electron Configuration Orbital Box Diagram Electron-dot Diagram 1s 2 2s 2 2p 6 3s 2 3p 5 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 10 5p 4 1s 2 2s 2 2p 4 Silver is 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 8 Ag:

The Copper Atom

Mark your Periodic Tables

Scanning Tunneling Microscope

In 1926, Erwin Schrodinger derived an equation that described the energy and position of the electrons in an atom. probability Equation for the probability of a single electron being found along a single axis (x-axis) Erwin Schrodinger