Introduction to Probability and Statistics Thirteenth Edition Chapter 5 Several Useful Discrete Distributions.

Slides:



Advertisements
Similar presentations
DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS
Advertisements

Introduction to Probability and Statistics Chapter 5 Discrete Distributions.
Chapter 5 Some Important Discrete Probability Distributions
Basic Business Statistics, 10e © 2006 Prentice-Hall, Inc.. Chap 5-1 Chapter 5 Some Important Discrete Probability Distributions Basic Business Statistics.
Basic Business Statistics, 11e © 2009 Prentice-Hall, Inc. Chap 5-1 Chapter 5 Some Important Discrete Probability Distributions Basic Business Statistics.
Note 6 of 5E Statistics with Economics and Business Applications Chapter 4 Useful Discrete Probability Distributions Binomial, Poisson and Hypergeometric.
ฟังก์ชั่นการแจกแจงความน่าจะเป็น แบบไม่ต่อเนื่อง Discrete Probability Distributions.
Statistics for Managers Using Microsoft Excel, 4e © 2004 Prentice-Hall, Inc. Chap 5-1 Chapter 5 Some Important Discrete Probability Distributions Statistics.
HAWKES LEARNING SYSTEMS math courseware specialists Copyright © 2010 by Hawkes Learning Systems/Quant Systems, Inc. All rights reserved. Chapter 7 Probability.
Statistics for Managers Using Microsoft Excel, 5e © 2008 Pearson Prentice-Hall, Inc.Chap 5-1 Statistics for Managers Using Microsoft® Excel 5th Edition.
Chapter 4 Discrete Random Variables and Probability Distributions
The Binomial Probability Distribution and Related Topics
Probability Distributions
Statistics for Managers Using Microsoft Excel, 4e © 2004 Prentice-Hall, Inc. Chap 5-1 Chapter 5 Some Important Discrete Probability Distributions Statistics.
Chapter 5 Probability Distributions
Discrete Probability Distributions
Chapter 5 Discrete Probability Distributions
Lecture Slides Elementary Statistics Twelfth Edition
Chap 5-1 Copyright ©2012 Pearson Education, Inc. publishing as Prentice Hall Chap 5-1 Chapter 5 Discrete Probability Distributions Basic Business Statistics.
Class notes for ISE 201 San Jose State University
Irwin/McGraw-Hill © The McGraw-Hill Companies, Inc., 2000 LIND MASON MARCHAL 1-1 Chapter Five Discrete Probability Distributions GOALS When you have completed.
McGraw-Hill Ryerson Copyright © 2011 McGraw-Hill Ryerson Limited. Adapted by Peter Au, George Brown College.
Discrete Probability Distributions Binomial Distribution Poisson Distribution Hypergeometric Distribution.
Chapter 5 Several Discrete Distributions General Objectives: Discrete random variables are used in many practical applications. These random variables.
Chapter 5 Discrete Probability Distribution I. Basic Definitions II. Summary Measures for Discrete Random Variable Expected Value (Mean) Variance and Standard.
Copyright ©2011 Nelson Education Limited. Probability and Probability Distributions CHAPTER 4 Part 2.
McGraw-Hill/IrwinCopyright © 2009 by The McGraw-Hill Companies, Inc. All Rights Reserved. Chapter 4 and 5 Probability and Discrete Random Variables.
McGraw-Hill/Irwin Copyright © 2007 by The McGraw-Hill Companies, Inc. All rights reserved. Discrete Random Variables Chapter 4.
Chap 5-1 Copyright ©2013 Pearson Education, Inc. publishing as Prentice Hall Chapter 5 Discrete Probability Distributions Business Statistics: A First.
Chapter 6: Probability Distributions
5-1 Business Statistics: A Decision-Making Approach 8 th Edition Chapter 5 Discrete Probability Distributions.
Binomial distribution Nutan S. Mishra Department of Mathematics and Statistics University of South Alabama.
Binomial Distributions Calculating the Probability of Success.
Copyright © 2010, 2007, 2004 Pearson Education, Inc. Review and Preview This chapter combines the methods of descriptive statistics presented in.
Chapter 4 Probability Distributions
Introduction Discrete random variables take on only a finite or countable number of values. Three discrete probability distributions serve as models for.
Copyright ©2011 Nelson Education Limited The Binomial Experiment n identical trials. 1.The experiment consists of n identical trials. one of two outcomes.
Introduction to Probability and Statistics Thirteenth Edition Chapter 5 Several Useful Discrete Distributions.
MTH3003 PJJ SEM I 2015/2016.  ASSIGNMENT :25% Assignment 1 (10%) Assignment 2 (15%)  Mid exam :30% Part A (Objective) Part B (Subjective)  Final Exam:
MATB344 Applied Statistics Chapter 5 Several Useful Discrete Distributions.
Basic Business Statistics, 10e © 2006 Prentice-Hall, Inc.. Chap 5-1 Chapter 5 Some Important Discrete Probability Distributions Basic Business Statistics.
Copyright © 2010 by The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill/Irwin Chapter 5 Discrete Random Variables.
McGraw-Hill/IrwinCopyright © 2009 by The McGraw-Hill Companies, Inc. All Rights Reserved. Chapter 5 Discrete Random Variables.
Copyright (C) 2002 Houghton Mifflin Company. All rights reserved. 1 Understandable Statistics Seventh Edition By Brase and Brase Prepared by: Mistah Flynn.
STATISTIC & INFORMATION THEORY (CSNB134) MODULE 7B PROBABILITY DISTRIBUTIONS FOR RANDOM VARIABLES ( POISSON DISTRIBUTION)
STATISTIC & INFORMATION THEORY (CSNB134) MODULE 7A PROBABILITY DISTRIBUTIONS FOR RANDOM VARIABLES (BINOMIAL DISTRIBUTION)
Copyright ©2006 Brooks/Cole A division of Thomson Learning, Inc. Introduction to Probability and Statistics Twelfth Edition Robert J. Beaver Barbara M.
Business Statistics: A Decision-Making Approach, 7e © 2008 Prentice-Hall, Inc. Chap 5-1 Business Statistics: A Decision-Making Approach 7 th Edition Chapter.
Binomial Distributions Chapter 5.3 – Probability Distributions and Predictions Mathematics of Data Management (Nelson) MDM 4U.
MATB344 Applied Statistics Chapter 5 Several Useful Discrete Distributions.
1 Chapter 8 Random Variables and Probability Distributions IRandom Sampling A.Population 1.Population element 2.Sampling with and without replacement.
Chapter 5 Probability Distributions 5-1 Overview 5-2 Random Variables 5-3 Binomial Probability Distributions 5-4 Mean, Variance and Standard Deviation.
Copyright © 2011 by The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill/Irwin Chapter 5 Discrete Random Variables.
Binomial Distributions Chapter 5.3 – Probability Distributions and Predictions Mathematics of Data Management (Nelson) MDM 4U Authors: Gary Greer (with.
Distribusi Peubah Acak Khusus Pertemuan 08 Matakuliah: L0104 / Statistika Psikologi Tahun : 2008.
Business Statistics, A First Course (4e) © 2006 Prentice-Hall, Inc. Chap 5-1 Chapter 5 Some Important Discrete Probability Distributions Business Statistics,
Chap 5-1 Chapter 5 Discrete Random Variables and Probability Distributions Statistics for Business and Economics 6 th Edition.
Copyright (C) 2002 Houghton Mifflin Company. All rights reserved. 1 Understandable Statistics Seventh Edition By Brase and Brase Prepared by: Lynn Smith.
Chapter Five The Binomial Probability Distribution and Related Topics
Discrete Random Variables
Pertemuan 11 Sebaran Peluang Hipergeometrik dan Geometrik
Binomial and Geometric Random Variables
Discrete Random Variables
Virtual University of Pakistan
ENGR 201: Statistics for Engineers
Chapter 5 Some Important Discrete Probability Distributions
Introduction to Probability and Statistics
Lecture 11: Binomial and Poisson Distributions
Introduction to Probability and Statistics
Elementary Statistics
Presentation transcript:

Introduction to Probability and Statistics Thirteenth Edition Chapter 5 Several Useful Discrete Distributions

Introduction Discrete random variables take on only a finite or countably infinite number of values. Three discrete probability distributions serve as models for a large number of practical applications: binomial The binomial random variable Poisson The Poisson random variable hypergeometric The hypergeometric random variable binomial The binomial random variable Poisson The Poisson random variable hypergeometric The hypergeometric random variable

The Binomial Random Variable coin-tossing experiment binomial random variable.The coin-tossing experiment is a simple example of a binomial random variable. Toss a fair coin n = 3 times and record x = number of heads. xp(x) 01/8 13/8 2 31/8

The Binomial Random Variable Many situations in real life resemble the coin toss, but the coin is not necessarily fair, so that P(H)  1/2. Example:Example: A geneticist samples 10 people and counts the number who have a gene linked to Alzheimer’s disease. Person Coin:Coin: Head:Head: Tail:Tail: Number ofNumber of tosses: tosses: P(H):P(H): Has gene Doesn’t have gene n = 10 P(has gene) = proportion in the population who have the gene.

The Binomial Experiment n identical trials. 1.The experiment consists of n identical trials. one of two outcomes 2.Each trial results in one of two outcomes, success (S) or failure (F). remains constant 3.The probability of success on a single trial is p and remains constant from trial to trial. The probability of failure is q = 1 – p. independent 4.The trials are independent. x, the number of successes in n trials. 5.We are interested in x, the number of successes in n trials.

Binomial or Not? Very few real life applications satisfy these requirements exactly. Select two people from the U.S. population, and suppose that 15% of the population has the Alzheimer’s gene. For the first person, p = P(gene) =.15 For the second person, p  P(gene) =.15, even though one person has been removed from the population.

The Binomial Probability Distribution For a binomial experiment with n trials and probability p of success on a given trial, the probability of k successes in n trials is

The Mean and Standard Deviation For a binomial experiment with n trials and probability p of success on a given trial, the measures of center and spread are:

n = p =x = success =Example A marksman hits a target 80% of the time. He fires five shots at the target. What is the probability that exactly 3 shots hit the target? 5.8hit# of hits

Example What is the probability that more than 3 shots hit the target?

Cumulative Probability Tables cumulative probability tables You can use the cumulative probability tables to find probabilities for selected binomial distributions. Find the table for the correct value of n. Find the column for the correct value of p. The row marked “k” gives the cumulative probability, P(x  k) = P(x = 0) +…+ P(x = k) Find the table for the correct value of n. Find the column for the correct value of p. The row marked “k” gives the cumulative probability, P(x  k) = P(x = 0) +…+ P(x = k)

Example What is the probability that exactly 3 shots hit the target? P(x = 3) P(x = 3) = P(x  3) – P(x  2) = =.205 P(x = 3) P(x = 3) = P(x  3) – P(x  2) = =.205 Check from formula: P(x = 3) =.205

Example kp = What is the probability that more than 3 shots hit the target? P(x > 3) P(x > 3) = 1 - P(x  3) = =.737 P(x > 3) P(x > 3) = 1 - P(x  3) = =.737 Check from formula: P(x = 3) =.205 EX. 5.5, page 189

Example Here is the probability distribution for x = number of hits. What are the mean and standard deviation for x? 

Example Would it be unusual to find that none of the shots hit the target?  The value x = 0 lies more than 4 standard deviations below the mean. Very unusual.

The Poisson Random Variable The Poisson random variable x is a model for data that represent the number of occurrences of a specified event in a given unit of time or space. Examples:Examples: The number of calls received by a switchboard during a given period of time. The number of machine breakdowns in a day The number of traffic accidents at a given intersection during a given time period.

The Poisson Probability Distribution x x is the number of events that occur in a period of time or space during which an average of  such events can be expected to occur. The probability of k occurrences of this event is For values of k = 0, 1, 2, … The mean and standard deviation of the Poisson random variable are Mean:  Standard deviation: For values of k = 0, 1, 2, … The mean and standard deviation of the Poisson random variable are Mean:  Standard deviation:

Example

Cumulative Probability Tables cumulative probability tables You can use the cumulative probability tables to find probabilities for selected Poisson distributions. Find the column for the correct value of . The row marked “k” gives the cumulative probability, P(x  k) = P(x = 0) +…+ P(x = k) Find the column for the correct value of . The row marked “k” gives the cumulative probability, P(x  k) = P(x = 0) +…+ P(x = k)

Example What is the probability that there is exactly 1 accident? P(x = 1) P(x = 1) = P(x  1) – P(x  0) = =.271 P(x = 1) P(x = 1) = P(x  1) – P(x  0) = =.271 Check from formula: P(x = 1) =.2707

Example What is the probability that 8 or more accidents happen? P(x  8) P(x  8) = 1 - P(x < 8) = 1 – P(x  7) = =.001 P(x  8) P(x  8) = 1 - P(x < 8) = 1 – P(x  7) = =.001 k  = This would be very unusual (small probability) since x = 8 lies standard deviations above the mean. This would be very unusual (small probability) since x = 8 lies standard deviations above the mean. Example: 5.39, 5.40

The probability of exactly k successes in n trials is The Hypergeometric Probability Distribution A bowl contains M red candies and N-M blue candies. Select n candies from the bowl and record x the number of red candies selected. Define a “red” to be a “success”. m m m m m m m

The Mean and Variance The mean and variance of the hypergeometric random variable x resemble the mean and variance of the binomial random variable: m m m m m m m

Example A package of 8 AA batteries contains 2 batteries that are defective. A student randomly selects four batteries and replaces the batteries in his calculator. What is the probability that all four batteries work? Success = working battery N = 8 M = 6 n = 4

Example What are the mean and variance for the number of batteries that work?

Key Concepts I. The Binomial Random Variable 1. Five characteristics: n identical independent trials, each resulting in either success S or failure F; probability of success is p and remains constant from trial to trial; and x is the number of successes in n trials. 2. Calculating binomial probabilities a. Formula: b. Cumulative binomial tables c. Individual and cumulative probabilities using Minitab 3. Mean of the binomial random variable:   np 4. Variance and standard deviation:  2  npq and

Key Concepts II. The Poisson Random Variable 1. The number of events that occur in a period of time or space, during which an average of  such events are expected to occur 2. Calculating Poisson probabilities a. Formula: b. Cumulative Poisson tables c. Individual and cumulative probabilities using Minitab 3. Mean of the Poisson random variable: E(x)  4. Variance and standard deviation:  2   and 5. Binomial probabilities can be approximated with Poisson probabilities when np  7, using   np.

Key Concepts III. The Hypergeometric Random Variable 1. The number of successes in a sample of size n from a finite population containing M successes and N  M failures 2. Formula for the probability of k successes in n trials: 3. Mean of the hypergeometric random variable: 4. Variance and standard deviation: