Network Layer4-1 Distance Vector Algorithm Bellman-Ford Equation (dynamic programming) Define d x (y) := cost of least-cost path from x to y Then d x (y)

Slides:



Advertisements
Similar presentations
Network Layer4-1 Hierarchical Routing scale: with 200 million destinations: r can’t store all dest’s in routing tables! r routing table exchange would.
Advertisements

Lecture 9 Overview. Hierarchical Routing scale – with 200 million destinations – can’t store all dests in routing tables! – routing table exchange would.
Data Communications and Computer Networks Chapter 4 CS 3830 Lecture 22 Omar Meqdadi Department of Computer Science and Software Engineering University.
13 –Routing Protocols Network Layer4-1. Network Layer4-2 Chapter 4 Network Layer Computer Networking: A Top Down Approach Featuring the Internet, 3 rd.
Lecture 8 Overview. Graph abstraction u y x wv z Graph: G = (N,E) N = set of routers = { u, v, w, x, y, z } E = set of links ={ (u,v),
Distance-Vector and Path-Vector Routing Sections , 4.3.2, COS 461: Computer Networks Spring 2011 Mike Freedman
Routing - I Important concepts: link state based routing, distance vector based routing.
Data Communication and Networks Lectures 8 and 9 Networks: Part 2 Routing Algorithms and Routing Protocols October 26, November 2, 2006.
0 TDTS41 Computer Networks Lecture 4: Network layer I Claudiu Duma, IISLAB/IDA Linköpings universitet.
Network Layer4-1 Chapter 4: Network Layer r 4. 1 Introduction r 4.2 Virtual circuit and datagram networks r 4.5 Routing algorithms m Link state m Distance.
CIS 235: Networks Fall, 2007 Western State College Computer Networks Fall, 2007 Prof Peterson.
1 Announcement r CTEC code for TA CS 340 Lin Code: 322.
Distance-Vector Routing COS 461: Computer Networks Spring 2010 (MW 3:00-4:20 in COS 105) Michael Freedman
1 Lecture 12: Routing Slides adapted from: Computer Networks: A Systems Approach (Peterson and Davis) Computer Networking: A Top Down Approach Featuring.
Network Layer Design Isues Store-and-Forward Packet Switching Services Provided to the Transport Layer The service should be independent of the router.
Data Communication and Networks Lecture 7 Networks: Part 2 Routing Algorithms October 27, 2005.
4-1 Network layer r transport segment from sending to receiving host r on sending side encapsulates segments into datagrams r on rcving side, delivers.
Network Layer4-1 Chapter 4 Network Layer Computer Networking: A Top Down Approach Featuring the Internet, 2 nd edition. Jim Kurose, Keith Ross Addison-Wesley,
Routing Algorithms and Routing in the Internet
CPSC441: Routing1 Instructor: Anirban Mahanti Office: ICT Class Location: ICT 121 Lectures: MWF 12:00 – 12:50 hours.
Network Layer4-1 Chapter 4: Network Layer, partb The slides are adaptations of the slides available by the main textbook authors, Kurose&Ross.
Announcement r Project 2 extended to 2/20 midnight r Project 3 available this weekend r Homework 3 available today, will put it online.
14 – Inter/Intra-AS Routing
Lecture 7 Overview. Two Key Network-Layer Functions forwarding: move packets from router’s input to appropriate router output routing: determine route.
4: Network Layer4a-1 14: Intro to Routing Algorithms Last Modified: 7/12/ :17:44 AM.
Announcement r Project 2 Extension ? m Previous grade allocation: Projects 40% –Web client/server7% –TCP stack21% –IP routing12% Midterm 20% Final 20%
Announcement r Project 2 due next week! r Homework 3 available soon, will put it online r Recitation tomorrow on Minet and project 2.
EE 122: Intra-domain routing Ion Stoica September 30, 2002 (* this presentation is based on the on-line slides of J. Kurose & K. Rose)
Chapter 4 Network Layer slides are modified from J. Kurose & K. Ross CPE 400 / 600 Computer Communication Networks Lecture 18.
Transport Layer 3-1 Chapter 4 Network Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012  CPSC.
14 – Inter/Intra-AS Routing Network Layer Hierarchical Routing scale: with > 200 million destinations: can’t store all dest’s in routing tables!
Network Layer r Introduction r Datagram networks r IP: Internet Protocol m Datagram format m IPv4 addressing m ICMP r What’s inside a router r Routing.
Introduction 1 Lecture 21 Network Layer (Routing Activity) slides are modified from J. Kurose & K. Ross University of Nevada – Reno Computer Science &
Introduction 1 Lecture 19 Network Layer (Routing Protocols) slides are modified from J. Kurose & K. Ross University of Nevada – Reno Computer Science &
Network Layer4-1 Chapter 4 Network Layer Part 3: Routing Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March.
10-1 Last time □ Transitioning to IPv6 ♦ Tunneling ♦ Gateways □ Routing ♦ Graph abstraction ♦ Link-state routing Dijkstra's Algorithm ♦ Distance-vector.
Network Layer4-1 Chapter 4: Network Layer r 4. 1 Introduction r 4.2 Virtual circuit and datagram networks r 4.3 What’s inside a router r 4.4 IP: Internet.
Chapter 4 Network Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 The slides are adaptation.
13 – Routing Algorithms Network Layer.
Distance Vector Routing
1 Mao W07 Interdomain Routing Broadcast routing EECS 489 Computer Networks Z. Morley Mao Monday Feb 12, 2007.
Introduction 1 Lecture 19 Network Layer (Routing Algorithms) slides are modified from J. Kurose & K. Ross University of Nevada – Reno Computer Science.
Internet Routing r Routing algorithms m Link state m Distance Vector m Hierarchical routing r Routing protocols m RIP m OSPF m BGP.
Transport Layer 3-1 Chapter 4 Network Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley Chapter4_3.
CS 4284 Systems Capstone Godmar Back Networking. CS 4284 Spring 2013 Summary Basics of Network Layer –Routing (path selection) vs Forwarding (switching)
Network Layer4-1 Routing Algorithm Classification Global or decentralized information? Global: r all routers have complete topology, link cost info r “link.
CS 1652 The slides are adapted from the publisher’s material All material copyright J.F Kurose and K.W. Ross, All Rights Reserved Jack Lange.
Advance Computer Networks Lecture#07 to 08 Instructor: Engr. Muhammad Mateen Yaqoob.
Network Layer4-1 Chapter 4: Network Layer r 4. 1 Introduction r 4.2 Virtual circuit and datagram networks r 4.3 What’s inside a router r 4.4 IP: Internet.
4: Network Layer4a-1 Distance Vector Routing Algorithm iterative: r continues until no nodes exchange info. r self-terminating: no “signal” to stop asynchronous:
Network Layer4-1 Chapter 4: Network Layer r 4. 1 Introduction r 4.2 Virtual circuit and datagram networks r 4.3 What’s inside a router r 4.4 IP: Internet.
@Yuan Xue A special acknowledge goes to J.F Kurose and K.W. Ross Some of the slides used in this lecture are adapted from their.
Application Layer 2-1 Chapter 4 Network Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 A.
IP tutorial - #2 Routing KAIST Dept. of CS NC Lab.
Network Layer4-1 Chapter 4: Network Layer 4. 1 Introduction 4.2 Virtual circuit and datagram networks 4.3 What’s inside a router 4.4 IP: Internet Protocol.
CS 5565 Network Architecture and Protocols
Chapter 4 Network Layer A note on the use of these ppt slides:
Network Layer Introduction Datagram networks IP: Internet Protocol
Routing: Distance Vector Algorithm
Distance Vector Routing: overview
Road Map I. Introduction II. IP Protocols III. Transport Layer
Lecture 10 Computer Networking: A Top Down Approach 6th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 CS3516: These slides are generated from.
Chapter 4-4 routing and IP routing
Routers Routing algorithms
Chapter 4: Network Layer
Network Layer (contd.) Routing
Chapter 4: Network Layer
Network Layer: Link-state and Distance-Vector Routing Protocols
Chapter 4: Network Layer
Chapter 4 Network Layer A note on the use of these ppt slides:
Presentation transcript:

Network Layer4-1 Distance Vector Algorithm Bellman-Ford Equation (dynamic programming) Define d x (y) := cost of least-cost path from x to y Then d x (y) = min {c(x,v) + d v (y) } where min is taken over all neighbors v of x v

Network Layer4-2 Bellman-Ford example u y x wv z Clearly, d v (z) = 5, d x (z) = 3, d w (z) = 3 d u (z) = min { c(u,v) + d v (z), c(u,x) + d x (z), c(u,w) + d w (z) } = min {2 + 5, 1 + 3, 5 + 3} = 4 Node that achieves minimum is next hop in shortest path ➜ forwarding table B-F equation says:

Network Layer4-3 Distance Vector Algorithm r D x (y) = estimate of least cost from x to y  Distance vector: D x = [D x (y): y є N ] r Node x knows cost to each neighbor v: c(x,v)  Node x maintains D x = [D x (y): y є N ] r Node x also maintains its neighbors’ distance vectors  For each neighbor v, x maintains D v = [D v (y): y є N ]

Network Layer4-4 Distance vector algorithm (4) Basic idea: r Each node periodically sends its own distance vector estimate to neighbors r When a node x receives new DV estimate from neighbor, it updates its own DV using B-F equation: D x (y) ← min v {c(x,v) + D v (y)} for each node y ∊ N  Under minor, natural conditions, the estimate D x (y) converge to the actual least cost d x (y)

Network Layer4-5 Distance Vector Algorithm (5) Iterative, asynchronous: each local iteration caused by: r local link cost change r DV update message from neighbor Distributed: r each node notifies neighbors only when its DV changes m neighbors then notify their neighbors if necessary wait for (change in local link cost of msg from neighbor) recompute estimates if DV to any dest has changed, notify neighbors Each node:

Network Layer4-6 x y z x y z ∞∞∞ ∞∞∞ from cost to from x y z x y z from cost to x y z x y z from cost to x y z x y z ∞∞ ∞∞∞ cost to x y z x y z from cost to x y z x y z from cost to x y z x y z from cost to x y z x y z from cost to x y z x y z ∞∞∞ 710 cost to ∞ ∞ ∞ ∞ time x z y node x table node y table node z table D x (y) = min{c(x,y) + D y (y), c(x,z) + D z (y)} = min{2+0, 7+1} = 2 D x (z) = min{c(x,y) + D y (z), c(x,z) + D z (z)} = min{2+1, 7+0} = 3

Network Layer4-7 Distance Vector: link cost changes Link cost changes: r node detects local link cost change r updates routing info, recalculates distance vector r if DV changes, notify neighbors “good news travels fast” x z y 1 At time t 0, y detects the link-cost change, updates its DV, and informs its neighbors. At time t 1, z receives the update from y and updates its table. It computes a new least cost to x and sends its neighbors its DV. At time t 2, y receives z’s update and updates its distance table. y’s least costs do not change and hence y does not send any message to z.

Network Layer4-8 Distance Vector: link cost changes Link cost changes: r good news travels fast r bad news travels slow - “count to infinity” problem! r 44 iterations before algorithm stabilizes: see text Poissoned reverse: r If Z routes through Y to get to X : m Z tells Y its (Z’s) distance to X is infinite (so Y won’t route to X via Z) r will this completely solve count to infinity problem? x z y 60

Network Layer4-9 Comparison of LS and DV algorithms Message complexity r LS: with n nodes, E links, O(nE) msgs sent r DV: exchange between neighbors only m convergence time varies Speed of Convergence r LS: O(n 2 ) algorithm requires O(nE) msgs m may have oscillations r DV: convergence time varies m may be routing loops m count-to-infinity problem Robustness: what happens if router malfunctions? LS: m node can advertise incorrect link cost m each node computes only its own table DV: m DV node can advertise incorrect path cost m each node’s table used by others error propagate thru network

Network Layer4-10 Hierarchical Routing scale: with 200 million destinations: r can’t store all dest’s in routing tables! r routing table exchange would swamp links! administrative autonomy r internet = network of networks r each network admin may want to control routing in its own network Our routing study thus far - idealization r all routers identical r network “flat” … not true in practice

Network Layer4-11 Hierarchical Routing r aggregate routers into regions, “autonomous systems” (AS) r routers in same AS run same routing protocol m “intra-AS” routing protocol m routers in different AS can run different intra- AS routing protocol Gateway router r Direct link to router in another AS

Network Layer4-12 3b 1d 3a 1c 2a AS3 AS1 AS2 1a 2c 2b 1b Intra-AS Routing algorithm Inter-AS Routing algorithm Forwarding table 3c Interconnected ASes r Forwarding table is configured by both intra- and inter-AS routing algorithm m Intra-AS sets entries for internal dests m Inter-AS & Intra-As sets entries for external dests

Network Layer4-13 3b 1d 3a 1c 2a AS3 AS1 AS2 1a 2c 2b 1b 3c Inter-AS tasks r Suppose router in AS1 receives datagram for which dest is outside of AS1 m Router should forward packet towards one of the gateway routers, but which one? AS1 needs: 1. to learn which dests are reachable through AS2 and which through AS3 2. to propagate this reachability info to all routers in AS1 Job of inter-AS routing!

Network Layer4-14 Example: Setting forwarding table in router 1d r Suppose AS1 learns from the inter-AS protocol that subnet x is reachable from AS3 (gateway 1c) but not from AS2. r Inter-AS protocol propagates reachability info to all internal routers. r Router 1d determines from intra-AS routing info that its interface I is on the least cost path to 1c. r Puts in forwarding table entry (x,I).

Network Layer4-15 Learn from inter-AS protocol that subnet x is reachable via multiple gateways Use routing info from intra-AS protocol to determine costs of least-cost paths to each of the gateways Hot potato routing: Choose the gateway that has the smallest least cost Determine from forwarding table the interface I that leads to least-cost gateway. Enter (x,I) in forwarding table Example: Choosing among multiple ASes r Now suppose AS1 learns from the inter-AS protocol that subnet x is reachable from AS3 and from AS2. r To configure forwarding table, router 1d must determine towards which gateway it should forward packets for dest x. r This is also the job on inter-AS routing protocol! r Hot potato routing: send packet towards closest of two routers.