Aquatic Ecology Notes.

Slides:



Advertisements
Similar presentations
Day 3 Topic 2 – Ecosystems.
Advertisements

Chapter 6 Aquatic Biodiversity
Lesson 6.3 Aquatic Ecosystems
Biomes. The axis of rotation is angled – the latitude that receives the most direct sunlight plus the most hours of sunlight changes throughout.
Ch. 4-4 Aquatic Ecosystems.
Compare and Contrast What are some ways in which life in an aphotic zone might differ from life in a photic zone Apply Concepts What is a wetland and.
Aquatic Biodiversity Chapter 8. Core Case Study: Why Should We Care about Coral Reefs? (1)  Biodiversity  Formation  Important ecological and economic.
Lesson Overview 4.5 Aquatic Ecosystems.
Aquatic Ecosystems Chapter 7.
Aquatic Biomes This can be found on my website. What factors influence the kind of life an aquatic biome contains?   Salinity (how much salt)   Depth.
Ch. 6 Aquatic Biodiversity and Life Zones
Ch 5 and 6: Climate/Biomes (Terrestrial and Aquatic)
Aquatic Ecology I.
Chapter 8 Review.
Chapter 6 Aquatic Biodiversity. Core Case Study: Why Should We Care About Coral Reefs?  Coral reefs form in clear, warm coastal waters of the tropics.
Chapter 8 Aquatic Biodiversity
Chapter 7 Aquatic Biodiversity.
Jason Zheng.  The Earth is made mainly of Water.  Saltwater covers around 71% of the earth’s surface.  Freshwater occupies only about 2.2%  Global.
Aquatic Biodiversity APES CHAPTER 8.
AQUATIC ECOSYSTEMS Determined by the salinity of water 2 types: Freshwater & Marine.
Section 7-1 Aquatic Environments. Core Case Study: Why Should We Care About Coral Reefs?  Coral reefs form in clear, warm coastal waters of the tropics.
Aquatic Biomes. Salt in Water Most of the salt in oceans is carried in by rivers.
Chapter 7. Aquatic Ecology: Biodiversity in Aquatic Systems Miller – Living in the Environment 13 th ed.
Aquatic Biomes Categorized by depth, salinity, temperature, dissolved oxygen Freshwater : streams, rivers, lakes and wetlands Marine: estuaries, intertidal.
Chapter 7 Aquatic Ecosystems Environmental Science Spring 2011.
Aquatic Biodiversity Chapter 8. Core Case Study: Why Should We Care about Coral Reefs? (1)  Biodiversity  Formation  Important ecological and economic.
WATER! 75% of the Earth’s surface is covered with water 70% of the Earth’s surface is the ocean These aquatic ecosystems can be divided into many different.
Aquatic biomes are categorized by: Salinity Freshwater Saltwater (marine) Depth Water flow.
Chapter 7 Aquatic Ecosystems Environmental Science Spring 2011.
Aquatic Biodiversity. Core Case Study: Why Should We Care About Coral Reefs?
Aquatic Ecosystems. Aquatic Life Zones There are three categories of marine life based on where plants and animals have adapted to live. Plankton, organisms.
Aquatic Life Zones Types of organisms in an aquatic ecosystem are mainly determined by salinity(amount of salt): Saltwater/ Marine life zones Freshwater.
Aquatic Biodiversity Chapter What Is the General Nature of Aquatic Systems?  Concept 8-1A Saltwater and freshwater aquatic life zones cover almost.
Chapter 6 Aquatic Biodiversity. Core Case Study: Why Should We Care About Coral Reefs?  Help moderate atmospheric temperature by removing CO 2 from the.
Chapter 6 Aquatic Biodiversity.
8-4 Why Are Freshwater Ecosystems Important? Concept 8-4 Freshwater ecosystems provide major ecological and economic services, and are irreplaceable reservoirs.
Chapter 8 Aquatic Biodiversity. AQUATIC ENVIRONMENTS  Saltwater and freshwater aquatic life zones cover almost three-fourths of the earth’s surface Figure.
Aquatic Ecosystems. Habitats Surface film: This is the place where the water meets the air. Animals found here include air-breathing insects that may.
Chapter 7 Environmental Science
Aquatic Biomes.
Aquatic Life Zones Aquatic biomes are categorized by: Salinity Depth
Chapter 6 Aquatic Biodiversity. Core Case Study: Why Should We Care About Coral Reefs?  Moderate climate (remove CO2)  Protect from erosion  Habitats.
Aquatic Ecosystems. Aquatic Life Zones There are three categories of marine life based on where plants and animals have adapted to live. Plankton, organisms.
Aquatic Biomes. Determined by Salt content Flow rate Size (sometimes) 2 major categories of aquatic biomes: Salt water system Freshwater.
Freshwater Aquatic Biodiversity 12/3/08. Freshwater systems May be standing bodies such as lakes, ponds, and inland wetlands May be standing bodies such.
Aquatic Biodiversity. Core Case Study: Why Should We Care About Coral Reefs?  Coral reefs form in clear, warm coastal waters of the tropics and subtropics.
Aquatic Biodiversity Chapter 8. Core Case Study: Why Should We Care about Coral Reefs?  Biodiversity  Formation  Important ecological and economic.
Unit 2 Lesson 2 Aquatic Ecosystems
Unit 2 Lesson 2 Aquatic Ecosystems
Lecture 14 Freshwater Ecosystems Ozgur Unal
Chapter Seven: Aquatic Ecosystems
Categorized by depth, salinity, temperature, dissolved oxygen
Freshwater Organisms and Niches
Section 3: Aquatic Ecosystems
Section 3: Aquatic Ecosystems
Aquatic Biomes.
Biomes & Aquatic Ecosystems.
Freshwater Ecosystems
Happy Tuesday! – 11/8 Which of the following is a shallow zone in a freshwater habitat where light reaches the bottom and nurtures plants?  A Benthic.
Chapter 7 Environmental Science
Unit 5: Part II- Aquatic Ecology & Biodiversity
Module 13 Aquatic Biomes After reading this module you should be able to Identify the major freshwater biomes. Identify the major marine biomes.
Chapter 8 Aquatic Biodiversity.
Section 3: Aquatic Ecosystems
Objective: Students will explore characteristics of aquatic ecosystems in order to explain the importance of coral reefs and wetlands. Drill: 11/09/16.
Aquatic Biomes are Categorized by Salinity, Depth, and Water Flow
Freshwater and Marine Ecosystems
Chapter 4.4 Aquatic ecosystems.
Aquatic Biomes Chapter 7.
Aquatic Ecosystems.
Presentation transcript:

Aquatic Ecology Notes

Photic Zone

Aphotic Zone

Intertidal Zone

Coral Reef

Life in Layers Life in most aquatic systems is found in surface, middle, and bottom layers. Temperature, access to sunlight for photosynthesis, dissolved oxygen content, nutrient availability changes with depth. Euphotic zone (upper layer in deep water habitats): sunlight can penetrate.

Lakes: Water-Filled Depressions Lakes are large natural bodies of standing freshwater formed from precipitation, runoff, and groundwater seepage consisting of: Littoral zone (near shore, shallow, with rooted plants). Limnetic zone (open, offshore area, sunlit). Profundal zone (deep, open water, too dark for photosynthesis). Benthic zone (bottom of lake, nourished by dead matter).

Littoral Zone A shallow area near the shore, to the depth at which rooted plants stop growing. Ex. frogs, snails, insects, fish, cattails, and water lilies.

Limnetic Zone Open, sunlit water that extends to the depth penetrated by sunlight.

Profundal Zone Deep, open water where it is too dark for photosynthesis.

Lakes: Water-Filled Depressions Figure 6-15

Oligotrophic

Eutrophic

Freshwater Wetlands

Freshwater Inland Wetlands: Vital Sponges Inland wetlands act like natural sponges that absorb and store excess water from storms and provide a variety of wildlife habitats. Figure 6-18

Freshwater Inland Wetlands: Vital Sponges Filter and degrade pollutants. Reduce flooding and erosion by absorbing slowly releasing overflows. Help replenish stream flows during dry periods. Help recharge ground aquifers. Provide economic resources and recreation.

Marshes An area of temporarily flooded, often silty land beside a river or lake.

Swamps A lowland region permanently covered with water.

Importance of freshwater wetlands They filter & purify water. Habitat for many animals and plants.

Historical Aspects Developers and farmers want Congress to revise the definition of wetlands. This would make 60-75% of all wetlands unavailable for protection. The Audubon Society estimates that wetlands provide water quality protection worth $1.6 billion per year, and they say if wetlands are destroyed, the U.S. would spend $7.7 billion to $31 billion per year in additional flood-control costs.

Estuaries

Definition A partially enclosed area of coastal water where sea water mixes with freshwater.

Salt Marshes The ground here is saturated with water and there is little oxygen, so decay takes place slowly. It has a surface inlet and outlet, and contains many invertebrates. It is also the breeding ground for many ocean animals. Ex. crabs and shellfish.

Mangrove Forests These are along warm, tropical coasts where there is too much silt for coral reefs to grow. It is dominated by salt-tolerant trees called mangroves (55 different species exist). It also helps to protect the coastline from erosion and provides a breeding nursery for some 2000 species of fish, invertebrates, and plants.                                   

Importance of Estuaries Just one acre of estuary provides $75,000 worth of free waste treatment, and has a value of about $83,000 when recreation and fish for food are included. Prime Kansas farmland has a top value of $1,200 and an annual production value of $600.