1 Program verification: flowchart programs (Book: chapter 7)

Slides:



Advertisements
Similar presentations
1 A B C
Advertisements

Simplifications of Context-Free Grammars
Variations of the Turing Machine
Angstrom Care 培苗社 Quadratic Equation II
AP STUDY SESSION 2.
1
Automated Theorem Proving Lecture 1. Program verification is undecidable! Given program P and specification S, does P satisfy S?
David Burdett May 11, 2004 Package Binding for WS CDL.
Chapter 2: Basic Structures: Sets, Functions, Sequences, and Sums (1)
Local Customization Chapter 2. Local Customization 2-2 Objectives Customization Considerations Types of Data Elements Location for Locally Defined Data.
CALENDAR.
INCOME AND SUBSTITUTION EFFECTS
Program verification: flowchart programs
Program verification: flowchart programs Book: chapter 7.
Program Verification Using Hoares Logic Book: Chapter 7.
Softrare Reliability Methods
Program verification: flowchart programs Book: chapter 7.
Programming Language Concepts
1 Click here to End Presentation Software: Installation and Updates Internet Download CD release NACIS Updates.
The 5S numbers game..
Biostatistics Unit 5 Samples Needs to be completed. 12/24/13.
Stationary Time Series
Break Time Remaining 10:00.
Factoring Quadratics — ax² + bx + c Topic
Turing Machines.
PP Test Review Sections 6-1 to 6-6
Digital Lessons on Factoring
MM4A6c: Apply the law of sines and the law of cosines.
LIAL HORNSBY SCHNEIDER
Bellwork Do the following problem on a ½ sheet of paper and turn in.
Quadratic Inequalities
Solving Quadratic Equations Solving Quadratic Equations
Equations of Lines Equations of Lines
Copyright © 2012, Elsevier Inc. All rights Reserved. 1 Chapter 7 Modeling Structure with Blocks.
1 Decision Procedures An algorithmic point of view Equality Logic and Uninterpreted Functions.
Functions, Graphs, and Limits
Chapter 1: Expressions, Equations, & Inequalities
Lilian Blot PART III: ITERATIONS Core Elements Autumn 2012 TPOP 1.
Graphs, representation, isomorphism, connectivity
Adding Up In Chunks.
MaK_Full ahead loaded 1 Alarm Page Directory (F11)
1 Chapter 4 The while loop and boolean operators Samuel Marateck ©2010.
1 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt Synthetic.
1 Termination and shape-shifting heaps Byron Cook Microsoft Research, Cambridge Joint work with Josh Berdine, Dino Distefano, and.
Slide R - 1 Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Prentice Hall Active Learning Lecture Slides For use with Classroom Response.
: 3 00.
5 minutes.
1 Non Deterministic Automata. 2 Alphabet = Nondeterministic Finite Accepter (NFA)
1 hi at no doifpi me be go we of at be do go hi if me no of pi we Inorder Traversal Inorder traversal. n Visit the left subtree. n Visit the node. n Visit.
1 Let’s Recapitulate. 2 Regular Languages DFAs NFAs Regular Expressions Regular Grammars.
Types of selection structures
12 System of Linear Equations Case Study
Converting a Fraction to %
Clock will move after 1 minute
Lial/Hungerford/Holcomb/Mullins: Mathematics with Applications 11e Finite Mathematics with Applications 11e Copyright ©2015 Pearson Education, Inc. All.
Lial/Hungerford/Holcomb/Mullins: Mathematics with Applications 11e Finite Mathematics with Applications 11e Copyright ©2015 Pearson Education, Inc. All.
Select a time to count down from the clock above
16. Mean Square Estimation
Copyright Tim Morris/St Stephen's School
1.step PMIT start + initial project data input Concept Concept.
9. Two Functions of Two Random Variables
1 Decidability continued…. 2 Theorem: For a recursively enumerable language it is undecidable to determine whether is finite Proof: We will reduce the.
1 Non Deterministic Automata. 2 Alphabet = Nondeterministic Finite Accepter (NFA)
Distributed Computing 5. Snapshot Shmuel Zaks ©
4/11/20151 Programming Languages and Compilers (CS 421) Elsa L Gunter 2112 SC, UIUC Based in part on slides by Mattox.
Chapter 4 FUGACITY.
SAT Solver CS 680 Formal Methods Jeremy Johnson. 2 Disjunctive Normal Form  A Boolean expression is a Boolean function  Any Boolean function can be.
Copyright , Doron Peled and Cesare Tinelli. These notes are based on a set of lecture notes originally developed by Doron Peled at the University.
Presentation transcript:

1 Program verification: flowchart programs (Book: chapter 7)

2 History Verification of flowchart programs: Floyd, 1967 Hoares logic: Hoare, 1969 Linear Temporal Logic: Pnueli, Krueger, 1977 Model Checking: Clarke & Emerson, 1981

3 Program Verification Predicate (first order) logic. Partial correctness, Total correctness Flowchart programs Invariants, annotated programs Well founded ordering (for termination) Hoares logic

4 Predicate (first order logic) Variables, functions, predicates Terms Formulas (assertions)

5 Signature Variables: v1, x, y18 Each variable represents a value of some given domain (int, real, string, …). Function symbols: f(_,_), g2(_), h(_,_,_). Each function has an arity (number of paramenters), a domain for each parameter, and a range. f:int*int->int (e.g., addition), g:real->real (e.g., square root) A constant is a predicate with arity 0. Relation symbols: R(_,_), Q(_). Each relation has an arity, and a domain for each parameter. R : real*real (e.g., greater than). Q : int (e.g., is a prime).

6 Terms Terms are objects that have values. Each variable is a term. Applying a function with arity n to n terms results in a new term. Examples: v1, 5.0, f(v1,5.0), g2(f(v1,5.0)) More familiar notation: sqr(v1+5.0)

7 Formulas Applying predicates to terms results in a formula. R(v1,5.0), Q(x) More familiar notation: v1>5.0 One can combine formulas with the boolean operators (and, or, not, implies). R(v1,5.0)->Q(x) x>1 -> x*x>x One can apply existentail and universal quantification to formulas. x Q(X) x1 R(x1,5.0) x y R(x,y)

8 A model, A proofs A model gives a meaning (semantics) to a first order formula: A relation for each relation symbol. A function for each function symbol. A value for each variable. An important concept in first order logic is that of a proof. We assume the ability to prove that a formula holds for a given model. Example proof rule (MP) :

9 Flowchart programs Input variables: X=x1,x2,…,xl Program variables: Y=y1,y2,…,ym Output variables: Z=z1,z2,…,zn start halt Y=f(X) Z=h(X,Y)

10 Assignments and tests Y=g(X,Y)t(X,Y) FT

11 start halt (y1,y2)=(0,x1) y2>=x2 (y1,y2)=(y1+1,y2-x2)(z1,z2)=(y1,y2) Initial condition Initial condition: the values for the input variables for which the program must work. x1>=0 /\ x2>0 F T

12 start halt (y1,y2)=(0,x1) y2>=x2 (y1,y2)=(y1+1,y2-x2)(z1,z2)=(y1,y2) The input-output claim The relation between the values of the input and the output variables at termination. x1=z1*x2+z2 /\ 0<=z2<x2 FT

13 Partial correctness, Termination, Total correctness Partial correctness: if the initial condition holds and the program terminates then the input-output claim holds. Termination: if the initial condition holds, the program terminates. Total correctness: if the initial condition holds, the program terminates and the input-output claim holds.

14 Subtle point: The program is partially correct with respect to x1>=0/\x2>=0 and totally correct with respect to x1>=0/\x2>0 start halt (y1,y2)=(0,x1) y2>=x2 (y1,y2)=(y1+1,y2-x2)(z1,z2)=(y1,y2) T F

15 start halt (y1,y2)=(0,x1) y2>=x2 (y1,y2)=(y1+1,y2-x2)(z1,z2)=(y1,y2) Annotating a scheme Assign an assertion for each pair of nodes. The assertion expresses the relation between the variable when the program counter is located between these nodes. A B CD E FT

16 Invariants Invariants are assertions that hold at each state throughout the execution of the program. One can attach an assertion to a particular location in the code: e.g., at(B) (B). This is also an invariant; in other locations, at(B) does not hold hence the implication holds. If there is an assertion attached to each location, (A), (B), (C), (D), (E), then their disjunction is also an invariant: (A)\/ (B)\/ (C)\/ (D)\/ (E) (since location is always at one of these locations).

17 Annotating a scheme with invariants A): x1>=0 /\ x2>=0 B): x1=y1*x2+y2 /\ y2>=0 C): x1=y1*x2+y2 /\ y2>=0 /\ y2>=x2 D):x1=y1*x2+y2 /\ y2>=0 /\ y2<x2 E):x1=z1*x2+z2 /\ 0<=z2<x2 Notice: (A) is the initial condition, E is the input-output condition. start halt (y1,y2)=(0,x1) y2>=x2 (y1,y2)=(y1+1,y2-x2)(z1,z2)=(y1,y2) A B CD E F T A) Is the precondition of (y1,y2)=(0,x1) and B) is its postcondition

18 Preliminary: Relativizing assertions (B) : x1= y1 * x2 + y2 /\ y2 >= 0 Relativize B) w.r.t. the assignment, obtaining B) [Y\g(X,Y)] e (B) expressed w.r.t. variables at A.) (B) A = x1=0 * x2 + x1 /\ x1>=0 Think about two sets of variables, before={x, y, z, …} after={x,y,z…}. Rewrite (B) using after, and the assignment as a relation between the set of variables. Then eliminate after by substitution. Here: x1=y1 * x2 + y2 /\ y2>=0 /\ x1=x1 /\ x2=x2 /\ y1=0 /\ y2=x1 now eliminate x1, x2, y1, y2. (y1,y2)=(0,x1) A B A B Y=g(X,Y)

19 Preliminary: Relativizing assertions (y1,y2)=(0,x1) A B A B A): (B) A (B) Y=g(X,Y)

20 Verification conditions: assignment A) B) A where B) A = B)[Y\g(X,Y)] A): x1>=0 /\ x2>=0 B): x1=y1*x2+y2 /\ y2>=0 B) A = x1=0*x2+x1 /\ x1>=0 (y1,y2)=(0,x1) A B A B Y=g(X,Y)

21 (y1,y2)=(y1+1,y2-x2) Second assignment C): x1=y1*x2+y2 /\ y2>=0 /\ y2>=x2 B): x1=y1*x2+y2 /\ y2>=0 B) C : x1=(y1+1)*x2+y2- x2 /\ y2-x2>=0 C B

22 (z1,z2)=(y1,y2) Third assignment D):x1=y1*x2+y2 /\ y2>=0 /\ y2<x2 E): x1=z1*x2+z2 /\ 0<=z2<x2 E) D : x1=y1*x2+y2 /\ 0<=y2<x2 E D

23 Verification conditions: tests B) /\ t(X,Y) C) B) /\¬t(X,Y) D) B): x1=y1*x2+y2 /\y2>=0 C): x1=y1*x2+y2 /\ y2>=0 /\ y2>=x2 D):x1=y1*x2+y2 /\ y2>=0 /\ y2<x2 y2>=x2 B C D B C D t(X,Y) F T FT

24 Verification conditions: tests y2>=x2 B C D B C D t(X,Y) F T FT ¬t(X,Y) B) C)

25 Partial correctness proof: An induction on length of execution B) D) C) Initially, states satisfy the initial conditions. Then, passing from one set of states to another, we preserve the invariants at the appropriate location. We prove: starting with a state satisfying the initial conditions, if are at a point in the execution, the invariant there holds. Not a proof of termination! start halt (y1,y2)=(0,x1) y2>=x2 (y1,y2)=(y1+1,y2-x2)(z1,z2)=(y1,y2) A B CD E A) no yes TF

26 Exercise: prove partial correctness Initial condition: x>=0 Input-output claim: z=x! start halt (y1,y2)=(0,1) y1=x (y1,y2)=(y1+1,(y1+1)*y2)z=y2 TF

27 What have we achieved? For each statement S that appears between points X and Y we showed that if the control is in X when (X) holds (the precondition of S) and S is executed, then (Y) (the postcondition of S) holds. Initially, we know that (A) holds. The above two conditions can be combined into an induction on the number of statements that were executed: If after n steps we are at point X, then (X) holds.

28 Another example (A) : x>=0 (F) : z^2<=x<(z+1)^2 z is the biggest number that is not greater than sqrt x. start (y1,y2,y3)=(0,0,1) A halt y2>x (y1,y3)=(y1+1,y3+2)z=y1 B C D F truefalse E y2=y2+y3

29 Some insight …+(2n+1)=(n+1)^2 y2 accumulates the above sum, until it is bigger than x. y3 ranges over odd numbers 1,3,5,… y1 is n-1. start (y1,y2,y3)=(0,0,1) A halt y2>x (y1,y3)=(y1+1,y3+2)z=y1 B C D F truefalse E y2=y2+y3

30 Invariants It is usually sufficient to have one invariant for every loop (cycle in the programs graph). We will have (C)=y1^2<=x /\ y2=(y1+1)^2 /\ y3=2*y1+1 start (y1,y2,y3)=(0,0,1) A halt y2>x (y1,y3)=(y1+1,y3+2)z=y1 B C D F truefalse E y2=y2+y3

31 Obtaining (B) By backwards substitution in (C). (C)=y1^2<=x /\ y2=(y1+1)^2 /\ y3=2*y1+1 (B)=y1^2<=x /\ y2+y3=(y1+1)^2 /\ y3=2*y1+1 start (y1,y2,y3)=(0,0,1) A halt y2>x (y1,y3)=(y1+1,y3+2)z=y1 B C D F truefalse E y2=y2+y3

32 Check assignment condition (A)=x>=0 (B)=y1^2<=x /\ y2+y3=(y1+1)^2 /\ y3=2*y1+1 (B) relativized is 0^2<=x /\ 0+1=(0+1)^2 /\ 1=2*0+1 Simplified: x>=0 start (y1,y2,y3)=(0,0,1) A halt y2>x (y1,y3)=(y1+1,y3+2)z=y1 B C D F truefalse E y2=y2+y3

33 Obtaining (D) By backwards substitution in (B). (B)=y1^2<=x /\ y2+y3=(y1+1)^2 /\ y3=2*y1+1 (D)=(y1+1)^2<=x /\ y2+y3+2=(y1+2)^2 /\ y3+2=2*(y1+1)+1 start (y1,y2,y3)=(0,0,1) A halt y2>x (y1,y3)=(y1+1,y3+2)z=y1 B C D F truefalse E y2=y2+y3

34 Checking (C)=y1^2<=x /\ y2=(y1+1)^2 /\ y3=2*y1+1 (C)/\y2<=x) (D) (D)=(y1+1)^2<=x /\ y2+y3+2=(y1+2)^2 /\ y3+2=2*(y1+1)+1 start (y1,y2,y3)=(0,0,1) A halt y2>x (y1,y3)=(y1+1,y3+2)z=y1 B C D F truefalse E y2=y2+y3

35 y1^2<=x /\ y2=(y1+1)^2 /\ y3=2*y1+1 /\y2<=x (y1+1)^2<=x /\ y2+y3+2=(y1+2)^2 /\ y3+2=2*(y1+1)+1 y1^2<=x /\ y2=(y1+1)^2 /\ y3=2*y1+1 /\y2<=x (y1+1)^2<=x /\ y2+y3+2=(y1+2)^2 /\ y3+2=2*(y1+1)+1 y1^2<=x /\ y2=(y1+1)^2 /\ y3=2*y1+1 /\y2<=x (y1+1)^2<=x /\ y2+y3+2=(y1+2)^2 /\ y3+2=2*(y1+1)+1

36 Not finished! Still needs to: Calculate (E) by substituting backwards from (F). Check that (C)/\y2>x (E) start (y1,y2,y3)=(0,0,1) A halt y2>x (y1,y3)=(y1+1,y3+2)z=y1 B C D F truefalse E y2=y2+y3

37 Exercise: prove partial correctness. Initially: x1>0/\x2>0. At termination: z1=gcd(x1,x2). halt start (y1,y2)=(x1,x2) z1=y1 y1=y2 FT y1>y2 y2=y2-y1 y1=y1-y2 TF

38 Annotation of program with invariants halt start (y1,y2)=(x1,x2) z1=y1 y1=y2 F T y1>y2 y2=y2-y1 y1=y1-y2 TF z1=gcd(x1,x2) x1>0 /\ x2>0 gcd(y1,y2)=gcd(x1,x2) /\y1>0/\y2>0 gcd(y1,y2)=gcd(x1,x2) /\y1>0/\y2>0/\y1 y2 gcd(y1,y2)=gcd(x1,x2)/\ y1>0/\y2>0/\y1<y2 gcd(y1,y2)=gcd(x1,x2)/\ y1>0/\y2>0/\y1>y2 y1=gcd(x1,x2) A B D E F G H

39 Part 1 halt start (y1,y2)=(x1,x2) z1=y1 y1=y2 F T y1>y2 y2=y2-y1 y1=y1-y2 TF (A)= x1>0 /\ x2>0 (B)=gcd(y1,y2)=gcd(x1,x2) /\y1>0/\y2>0 A B D E F G H (B)rel= gcd(x1,x2)=gcd(x1,x2)/\ x1>0/\x2>0 (A) (B)rel

40 Part 2a halt start (y1,y2)=(x1,x2) z1=y1 y1=y2 F T y1>y2 y2=y2-y1 y1=y1-y2 TF (B)= gcd(y1,y2)=gcd(x1,x2) /\y1>0/\y2>0 (D)=gcd(y1,y2)=gcd(x1,x2) /\y1>0/\y2>0/\y1 y2 A B D E F G H (B)/\ ¬(y1=y2) (D)

41 Part 2b halt start (y1,y2)=(x1,x2) z1=y1 y1=y2 F T y1>y2 y2=y2-y1 y1=y1-y2 TF (G)= y1=gcd(x1,x2) A B D E F G H (B)= gcd(y1,y2)=gcd(x1,x2) /\y1>0/\y2>0 (B)/\ (y1=y2) (G)

42 Part 3 halt start (y1,y2)=(x1,x2) z1=y1 y1=y2 FT y1>y2 y2=y2-y1 y1=y1-y2 TF (D)= gcd(y1,y2)=gcd(x1,x2) /\y1>0/\y2>0/\y1 y2 (E)=gcd(y1,y2)=gcd(x1,x2) /\y1>0/\y2>0/\y1<y2 (F)=(gcd(y1,y2)=gcd(x1,x2) /\y1>0/\y2>0/\y1>y2 A B D E F G H (D)/\ (y1>y2) (F) (D)/\ ¬(y1>y2) (E)

43 Part 4 halt start (y1,y2)=(x1,x2) z1=y1 y1=y2 F T y1>y2 y2=y2-y1 y1=y1-y2 TF x1>0 /\ x2>0 (B)= gcd(y1,y2)=gcd(x1,x2) /\y1>0/\y2>0 (E)= gcd(y1,y2)=gcd(x1,x2)/\ y1>0/\y2>0/\y1<y2 (F)= gcd(y1,y2)=gcd(x1,x2) /\y1>0/\y2>0/\y1>y2 A B D E F G H (B)relE= gcd(y1,y2-y1)=gcd(x1,x2) /\y1>0/\y2-y1>0 (B)relF= gcd(y1-y2,y2)=gcd(x1,x2) /\y1-y2>0/\y2>0 (E) (B)rel1 (F) (B)rel2

44 Annotation of program with invariants halt start (y1,y2)=(x1,x2) z1=y1 y1=y2 F T y1>y2 y2=y2-y1 y1=y1-y2 TF (H)= z1=gcd(x1,x2) (G)= y1=gcd(x1,x2) A B D E F G H (H)rel= y1=gcd(x1,x2) (G) (H)rel2

45 Proving termination

46 Well-founded sets Partially ordered set (W,<): If a<b and b<c then a<c (transitivity). If a<b then not b<a (asymmetry). Not a<a (irreflexivity). Well-founded set (W,<): Partially ordered. No infinite decreasing chain a1>a2>a3>…

47 Examples for well founded sets Natural numbers with the bigger than relation. Finite sets with the set inclusion relation. Strings with the substring relation. Tuples with alphabetic order: (a1,b1)>(a2,b2) iff a1>a2 or [a1=a2 and b1>b2]. (a1,b1,c1)>(a2,b2,c2) iff a1>a2 or [a1=a2 and b1>b2] or [a1=a2 and b1=b2 and c1>c2].

48 Why does the program terminate y2 starts as x1. Each time the loop is executed, y2 is decremented. y2 is natural number The loop cannot be entered again when y2<x2. start halt (y1,y2)=(y1+1,y2-x2)(z1,z2)=(y1,y2) (y1,y2)=(0,x1) A B D E false y2>=x2 C true

49 Proving termination Choose a well-founded set (W,<). Attach a function u(N) to each point N. Annotate the flowchart with invariants, and prove their consistency conditions. Prove that (N) (u(N) in W).

50 How not to stay in a loop? Show that u(M)>=u(N)rel. At least once in each loop, show that u(M)>u(N). S M N T N M

51 How not to stay in a loop? For stmt: (M) (u(M)>=u(N)rel) Relativize since we need to compare values not syntactic expressions. For test (true side): ( (M)/\test) (u(M)>=u(N)) For test (false side): ( (M)/\¬test) (u(M)>=u(L)) stmt M N test N M true L false

52 What did we achieve? There are finitely many control points. The value of the function u cannot increase. If we return to the same control point, the value of u must decrease (its a loop!). The value of u can decrease only a finite number of times.

53 Why does the program terminate u(A)=x1 u(B)=y2 u(C)=y2 u(D)=y2 u(E)=z2 W: naturals > : greater than start halt (y1,y2)=(y1+1,y2-x2)(z1,z2)=(y1,y2) (y1,y2)=(0,x1) A B D E false y2>=x2 C true

54 Recall partial correctness annotation A): x1>=0 /\ x2>=0 B): x1=y1*x2+y2 /\ y2>=0 C): x1=y1*x2+y2 /\ y2>=0 /\ y2>=x2 D):x1=y1*x2+y2 /\ y2>=0 /\ y2<x2 E):x1=z1*x2+z2 /\ 0<=z2<x2 start halt (y1,y2)=(0,x1) y2>=x2 (y1,y2)=(y1+1,y2-x2)(z1,z2)=(y1,y2) A B CD E false true

55 Strengthen for termination A): x1>=0 /\ x2>0 B): x1=y1*x2+y2 /\ y2>=0/\x2>0 C): x1=y1*x2+y2 /\ y2>=0/\y2>=x2/\x2>0 D):x1=y1*x2+y2 /\ y2>=0 /\ y2 0 E):x1=z1*x2+z2 /\ 0<=z2<x2 start halt (y1,y2)=(0,x1) y2>=x2 (y1,y2)=(y1+1,y2-x2)(z1,z2)=(y1,y2) A B CD E falsetrue

56 Strengthen for termination A): x1>=0 /\ x2>0 u(A)>=0 B): x1=y1*x2+y2 /\ y2>=0/\x2>0 u(B)>=0 C): x1=y1*x2+y2 /\y2>=0 /\y2>=x2/\x2>0 u(c)>=0 D):x1=y1*x2+y2 /\ y2>=0 /\ y2 0 u(D)>=0 E):x1=z1*x2+z2 /\ 0 =0 This proves that u(M) is natural for each point M. u(A)=x1 u(B)=y2 u(C)=y2 u(D)=y2 u(E)=z2

57 We shall show: u(A)=x1 u(B)=y2 u(C)=y2 u(D)=y2 u(E)=z2 A) u(A)>=u(B)rel B)/\y2>=x2 u(B)> =u(C) C) u(C)>u(B)rel B)/\y2 = u(D) D) u(D)>=u(E)rel start halt (y1,y2)=(y1+1,y2-x2)(z1,z2)=(y1,y2) (y1,y2)=(0,x1) A B D E false y2>=x2 C true

58 Proving decrement C): x1=y1*x2+y2 /\ y2>=0 /\ y2>=x2/\x2>0 u(C)=y2 u(B)=y2 u(B)rel=y2-x2 C) y2>y2-x2 (notice that C) x2>0) start halt (y1,y2)=(y1+1,y2-x2)(z1,z2)=(y1,y2) (y1,y2)=(0,x1) A B D E false y2>=x2 C true

59 Integer square prog. (C)=y1^2<=x /\ y2=(y1+1)^2 /\ y3=2*y1+1 (B)=y1^2<=x /\ y2+y3=(y1+1)^2 /\y3=2*y1+1 start (y1,y2,y3)=(0,0,1) A halt y2>x (y1,y3)=(y1+1,y3+2) z=y1 B C D F truefalse E y2=y2+y3

60 u(A)=x+1 u(B)=x-y2+1 u(C)=max(0,x-y2+1) u(D)=x-y2+1 u(E)=u(F)=0 u(A)>=u(B)rel u(B)>u(C)rel u(C)>=u(D) u(C)>=u(E) u(D)>=u(B)rel Need some invariants, i.e., y2 0 at points B and D, and y3>0 at point C. start (y1,y2,y3)=(0,0,1) A halt y2>x (y1,y3)=(y1+1,y3+2) z=y1 B C D F truefalse E y2=y2+y3