HAWKES LEARNING SYSTEMS Students Matter. Success Counts. Copyright © 2013 by Hawkes Learning Systems/Quant Systems, Inc. All rights reserved. Section 8.2.

Slides:



Advertisements
Similar presentations
HAWKES LEARNING SYSTEMS Students Matter. Success Counts. Copyright © 2013 by Hawkes Learning Systems/Quant Systems, Inc. All rights reserved. Chapter 4.
Advertisements

HAWKES LEARNING SYSTEMS Students Matter. Success Counts. Copyright © 2013 by Hawkes Learning Systems/Quant Systems, Inc. All rights reserved. Section 8.2.
HAWKES LEARNING SYSTEMS Students Matter. Success Counts. Copyright © 2013 by Hawkes Learning Systems/Quant Systems, Inc. All rights reserved. Section 8.4.
1 The t table provides critical value for various probabilities of interest. The form of the probabilities that appear in Appendix B are: P(t > t A, d.f.
HAWKES LEARNING SYSTEMS Students Matter. Success Counts. Copyright © 2013 by Hawkes Learning Systems/Quant Systems, Inc. All rights reserved. Section 5.2.
HAWKES LEARNING SYSTEMS Students Matter. Success Counts. Copyright © 2013 by Hawkes Learning Systems/Quant Systems, Inc. All rights reserved. Chapter 2.
HAWKES LEARNING SYSTEMS Students Matter. Success Counts. Copyright © 2013 by Hawkes Learning Systems/Quant Systems, Inc. All rights reserved. Section 6.4.
HAWKES LEARNING SYSTEMS Students Matter. Success Counts. Copyright © 2013 by Hawkes Learning Systems/Quant Systems, Inc. All rights reserved. Section 8.1.
Section 6.5 Finding t-Values Using the Student t-Distribution with TI-84 info added by D.R.S. HAWKES LEARNING SYSTEMS math courseware specialists Copyright.
HAWKES LEARNING SYSTEMS Students Matter. Success Counts. Copyright © 2013 by Hawkes Learning Systems/Quant Systems, Inc. All rights reserved. Section 10.7.
HAWKES LEARNING SYSTEMS Students Matter. Success Counts. Copyright © 2013 by Hawkes Learning Systems/Quant Systems, Inc. All rights reserved. Section 10.3.
HAWKES LEARNING SYSTEMS math courseware specialists Copyright © 2010 by Hawkes Learning Systems/Quant Systems, Inc. All rights reserved. Chapter 8 Continuous.
HAWKES LEARNING SYSTEMS Students Matter. Success Counts. Copyright © 2013 by Hawkes Learning Systems/Quant Systems, Inc. All rights reserved. Section 10.2.
HAWKES LEARNING SYSTEMS Students Matter. Success Counts. Copyright © 2013 by Hawkes Learning Systems/Quant Systems, Inc. All rights reserved. Section 8.5.
HAWKES LEARNING SYSTEMS Students Matter. Success Counts. Copyright © 2013 by Hawkes Learning Systems/Quant Systems, Inc. All rights reserved. Section 4.3.
HAWKES LEARNING SYSTEMS Students Matter. Success Counts. Copyright © 2013 by Hawkes Learning Systems/Quant Systems, Inc. All rights reserved. Section 10.6.
HAWKES LEARNING SYSTEMS Students Matter. Success Counts. Copyright © 2013 by Hawkes Learning Systems/Quant Systems, Inc. All rights reserved. Section 5.3.
HAWKES LEARNING SYSTEMS Students Matter. Success Counts. Copyright © 2013 by Hawkes Learning Systems/Quant Systems, Inc. All rights reserved. Section 4.2.
HAWKES LEARNING SYSTEMS Students Matter. Success Counts. Copyright © 2013 by Hawkes Learning Systems/Quant Systems, Inc. All rights reserved. Section 2.3.
HAWKES LEARNING SYSTEMS Students Matter. Success Counts. Copyright © 2013 by Hawkes Learning Systems/Quant Systems, Inc. All rights reserved. Section 2.3.
HAWKES LEARNING SYSTEMS Students Matter. Success Counts. Copyright © 2013 by Hawkes Learning Systems/Quant Systems, Inc. All rights reserved. Section 12.4.
Section 6.2 Reading a Normal Curve Table HAWKES LEARNING SYSTEMS math courseware specialists Copyright © 2008 by Hawkes Learning Systems/Quant Systems,
Section 6.5 Finding t-Values Using the Student t-Distribution HAWKES LEARNING SYSTEMS math courseware specialists Copyright © 2008 by Hawkes Learning Systems/Quant.
HAWKES LEARNING SYSTEMS Students Matter. Success Counts. Copyright © 2013 by Hawkes Learning Systems/Quant Systems, Inc. All rights reserved. Section 9.1.
Central Limit Theorem with Means
HAWKES LEARNING SYSTEMS Students Matter. Success Counts. Copyright © 2013 by Hawkes Learning Systems/Quant Systems, Inc. All rights reserved. Section 2.6.
HAWKES LEARNING SYSTEMS Students Matter. Success Counts. Copyright © 2013 by Hawkes Learning Systems/Quant Systems, Inc. All rights reserved. Section 7.3.
HAWKES LEARNING SYSTEMS Students Matter. Success Counts. Copyright © 2013 by Hawkes Learning Systems/Quant Systems, Inc. All rights reserved. Chapter 8.
HAWKES LEARNING SYSTEMS Students Matter. Success Counts. Copyright © 2013 by Hawkes Learning Systems/Quant Systems, Inc. All rights reserved. Section 7.8.
HAWKES LEARNING SYSTEMS Students Matter. Success Counts. Copyright © 2013 by Hawkes Learning Systems/Quant Systems, Inc. All rights reserved. Section 6.4.
HAWKES LEARNING SYSTEMS Students Matter. Success Counts. Copyright © 2013 by Hawkes Learning Systems/Quant Systems, Inc. All rights reserved. Section 8.3.
HAWKES LEARNING SYSTEMS Students Matter. Success Counts. Copyright © 2013 by Hawkes Learning Systems/Quant Systems, Inc. All rights reserved. Section 6.4.
HAWKES LEARNING SYSTEMS Students Matter. Success Counts. Copyright © 2013 by Hawkes Learning Systems/Quant Systems, Inc. All rights reserved. Example 10.17:
Copyright © Cengage Learning. All rights reserved. 13 Linear Correlation and Regression Analysis.
HAWKES LEARNING SYSTEMS Students Matter. Success Counts. Copyright © 2013 by Hawkes Learning Systems/Quant Systems, Inc. All rights reserved. Section 2.5.
HAWKES LEARNING SYSTEMS Students Matter. Success Counts. Copyright © 2013 by Hawkes Learning Systems/Quant Systems, Inc. All rights reserved. Section 2.3.
Section 12.3 Regression Analysis HAWKES LEARNING SYSTEMS math courseware specialists Copyright © 2008 by Hawkes Learning Systems/Quant Systems, Inc. All.
HAWKES LEARNING SYSTEMS Students Matter. Success Counts. Copyright © 2013 by Hawkes Learning Systems/Quant Systems, Inc. All rights reserved. Section 7.1.
HAWKES LEARNING SYSTEMS Students Matter. Success Counts. Copyright © 2013 by Hawkes Learning Systems/Quant Systems, Inc. All rights reserved. Section 10.3.
HAWKES LEARNING SYSTEMS Students Matter. Success Counts. Copyright © 2013 by Hawkes Learning Systems/Quant Systems, Inc. All rights reserved. Section 6.2.
HAWKES LEARNING SYSTEMS Students Matter. Success Counts. Copyright © 2013 by Hawkes Learning Systems/Quant Systems, Inc. All rights reserved. Section 12.1.
HAWKES LEARNING SYSTEMS Students Matter. Success Counts. Copyright © 2013 by Hawkes Learning Systems/Quant Systems, Inc. All rights reserved. Section 12.3.
HAWKES LEARNING SYSTEMS Students Matter. Success Counts. Copyright © 2013 by Hawkes Learning Systems/Quant Systems, Inc. All rights reserved. Section 6.3.
HAWKES LEARNING SYSTEMS Students Matter. Success Counts. Copyright © 2013 by Hawkes Learning Systems/Quant Systems, Inc. All rights reserved. Chapter 7.
HAWKES LEARNING SYSTEMS Students Matter. Success Counts. Copyright © 2013 by Hawkes Learning Systems/Quant Systems, Inc. All rights reserved. Section 8.2.
HAWKES LEARNING SYSTEMS Students Matter. Success Counts. Copyright © 2013 by Hawkes Learning Systems/Quant Systems, Inc. All rights reserved. Section 9.3.
HAWKES LEARNING SYSTEMS Students Matter. Success Counts. Copyright © 2013 by Hawkes Learning Systems/Quant Systems, Inc. All rights reserved. Section 9.5.
HAWKES LEARNING SYSTEMS Students Matter. Success Counts. Copyright © 2013 by Hawkes Learning Systems/Quant Systems, Inc. All rights reserved. Section 4.6.
HAWKES LEARNING SYSTEMS Students Matter. Success Counts. Copyright © 2013 by Hawkes Learning Systems/Quant Systems, Inc. All rights reserved. Chapter 6.
HAWKES LEARNING SYSTEMS Students Matter. Success Counts. Copyright © 2013 by Hawkes Learning Systems/Quant Systems, Inc. All rights reserved. Section 6.1.
HAWKES LEARNING SYSTEMS Students Matter. Success Counts. Copyright © 2013 by Hawkes Learning Systems/Quant Systems, Inc. All rights reserved. Section 2.2.
HAWKES LEARNING SYSTEMS Students Matter. Success Counts. Copyright © 2013 by Hawkes Learning Systems/Quant Systems, Inc. All rights reserved. Section 2.1.
Section 6.4 Finding z-Values Using the Normal Curve HAWKES LEARNING SYSTEMS math courseware specialists Copyright © 2008 by Hawkes Learning Systems/Quant.
Section 6.4 Finding z-Values Using the Normal Curve ( with enhancements by D.R.S. ) HAWKES LEARNING SYSTEMS math courseware specialists Copyright © 2008.
Copyright © 2015, 2012, and 2009 Pearson Education, Inc. 1 Section 6.2 Confidence Intervals for the Mean (  Unknown)
1 Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. Section 7.4: Estimation of a population mean   is not known  This section.
HAWKES LEARNING SYSTEMS Students Matter. Success Counts. Copyright © 2013 by Hawkes Learning Systems/Quant Systems, Inc. All rights reserved. Section 8.3.
HAWKES LEARNING SYSTEMS Students Matter. Success Counts. Copyright © 2013 by Hawkes Learning Systems/Quant Systems, Inc. All rights reserved. Section 1.8.
HAWKES LEARNING SYSTEMS Students Matter. Success Counts. Copyright © 2013 by Hawkes Learning Systems/Quant Systems, Inc. All rights reserved. Section 7.6.
HAWKES LEARNING SYSTEMS Students Matter. Success Counts. Copyright © 2013 by Hawkes Learning Systems/Quant Systems, Inc. All rights reserved. Section 9.2.
Section 8.3 Estimating Population Means (Small Samples) HAWKES LEARNING SYSTEMS math courseware specialists Copyright © 2008 by Hawkes Learning Systems/Quant.
HAWKES LEARNING SYSTEMS Students Matter. Success Counts. Copyright © 2013 by Hawkes Learning Systems/Quant Systems, Inc. All rights reserved. Section 10.5.
HAWKES LEARNING SYSTEMS Students Matter. Success Counts. Copyright © 2013 by Hawkes Learning Systems/Quant Systems, Inc. All rights reserved. Section 8.1.
HAWKES LEARNING SYSTEMS Students Matter. Success Counts. Copyright © 2013 by Hawkes Learning Systems/Quant Systems, Inc. All rights reserved. Section 8.3.
Section 6.2 Confidence Intervals for the Mean (Small Samples) © 2012 Pearson Education, Inc. All rights reserved. 1 of 83.
HAWKES LEARNING SYSTEMS Students Matter. Success Counts. Copyright © 2013 by Hawkes Learning Systems/Quant Systems, Inc. All rights reserved. Section 7.2.
HAWKES LEARNING SYSTEMS Students Matter. Success Counts. Copyright © 2013 by Hawkes Learning Systems/Quant Systems, Inc. All rights reserved. Section 11.5.
HAWKES LEARNING SYSTEMS Students Matter. Success Counts. Copyright © 2013 by Hawkes Learning Systems/Quant Systems, Inc. All rights reserved. Chapter 1.
Reading a Normal Curve Table
Elementary Statistics: Picturing The World
Presentation transcript:

HAWKES LEARNING SYSTEMS Students Matter. Success Counts. Copyright © 2013 by Hawkes Learning Systems/Quant Systems, Inc. All rights reserved. Section 8.2 Student’s t-Distribution

HAWKES LEARNING SYSTEMS Students Matter. Success Counts. Copyright © 2013 by Hawkes Learning Systems/Quant Systems, Inc. All rights reserved. Student’s t-Distribution Properties of a t-Distribution 1.A t-distribution curve is symmetric and bell-shaped, centered about 0. 2.A t-distribution curve is completely defined by its number of degrees of freedom, df. 3. The total area under a t-distribution curve equals The x-axis is a horizontal asymptote for a t-distribution curve.

HAWKES LEARNING SYSTEMS Students Matter. Success Counts. Copyright © 2013 by Hawkes Learning Systems/Quant Systems, Inc. All rights reserved. Example 8.9: Finding the Value of t α Find the value of t for the t-distribution with 25 degrees of freedom. Solution The number of degrees of freedom is listed in the first column of the t-distribution table. Since the t-distribution in our example has 25 degrees of freedom, the value we need lies on the row corresponding to df = 25.

HAWKES LEARNING SYSTEMS Students Matter. Success Counts. Copyright © 2013 by Hawkes Learning Systems/Quant Systems, Inc. All rights reserved. Example 8.9: Finding the Value of t α (cont.) Looking at the value of the subscript on t, which is the area in the right tail, 0.025, tells us to use the column for an area of in one tail. This row and column intersect at Thus, t =

HAWKES LEARNING SYSTEMS Students Matter. Success Counts. Copyright © 2013 by Hawkes Learning Systems/Quant Systems, Inc. All rights reserved. Example 8.9: Finding the Value of t α (cont.) df Area in One Tail Area in Two Tails

HAWKES LEARNING SYSTEMS Students Matter. Success Counts. Copyright © 2013 by Hawkes Learning Systems/Quant Systems, Inc. All rights reserved. Example 8.10: Finding the Value of t Given the Area to the Right Find the value of t for a t-distribution with 17 degrees of freedom such that the area under the curve to the right of t is 0.10.

HAWKES LEARNING SYSTEMS Students Matter. Success Counts. Copyright © 2013 by Hawkes Learning Systems/Quant Systems, Inc. All rights reserved. Example 8.10: Finding the Value of t Given the Area to the Right (cont.) Solution Note that according to the picture, the area under the curve to the right of t is This means that α= We are told that the distribution has 17 degrees of freedom. Looking across the row for df = 17 and down the column for an area in one tail of we see that t 0.10 =

HAWKES LEARNING SYSTEMS Students Matter. Success Counts. Copyright © 2013 by Hawkes Learning Systems/Quant Systems, Inc. All rights reserved. Example 8.10: Finding the Value of t Given the Area to the Right (cont.) df Area in One Tail Area in Two Tails

HAWKES LEARNING SYSTEMS Students Matter. Success Counts. Copyright © 2013 by Hawkes Learning Systems/Quant Systems, Inc. All rights reserved. Example 8.11: Finding the Value of t Given the Area to the Left Find the value of t for a t-distribution with 11 degrees of freedom such that the area under the curve to the left of t is 0.05.

HAWKES LEARNING SYSTEMS Students Matter. Success Counts. Copyright © 2013 by Hawkes Learning Systems/Quant Systems, Inc. All rights reserved. Example 8.11: Finding the Value of t Given the Area to the Left (cont.) Solution Because the t-distribution is symmetric, we can look up the t-value for an area of 0.05 under the curve to the right of t. Using the table, we get t 0.05 =

HAWKES LEARNING SYSTEMS Students Matter. Success Counts. Copyright © 2013 by Hawkes Learning Systems/Quant Systems, Inc. All rights reserved. Example 8.11: Finding the Value of t Given the Area to the Left (cont.) df Area in One Tail Area in Two Tails

HAWKES LEARNING SYSTEMS Students Matter. Success Counts. Copyright © 2013 by Hawkes Learning Systems/Quant Systems, Inc. All rights reserved. Example 8.11: Finding the Value of t Given the Area to the Left (cont.) However, since the given area is to the left of t, the t-value needs to be negative. So, for this example,  t 0.05 =  Some TI-84 Plus Silver Edition calculators can also be used to find the t-value. Press and then to go to the DISTR menu. Choose option 4:invT(.

HAWKES LEARNING SYSTEMS Students Matter. Success Counts. Copyright © 2013 by Hawkes Learning Systems/Quant Systems, Inc. All rights reserved. Example 8.11: Finding the Value of t Given the Area to the Left (cont.) Enter the area to the left of t and df in the parentheses as: invT( area to the left of t, df ). Enter invT(0.05,11). The answer given by the calculator is t ≈ 

HAWKES LEARNING SYSTEMS Students Matter. Success Counts. Copyright © 2013 by Hawkes Learning Systems/Quant Systems, Inc. All rights reserved. Example 8.12: Finding the Value of t Given the Area in Two Tails Find the value of t for a t-distribution with 7 degrees of freedom such that the area to the left of  t plus the area to the right of t is 0.02, as shown in the picture.

HAWKES LEARNING SYSTEMS Students Matter. Success Counts. Copyright © 2013 by Hawkes Learning Systems/Quant Systems, Inc. All rights reserved. Example 8.12: Finding the Value of t Given the Area in Two Tails (cont.) Solution This is a two-tailed problem because the given area, 0.02, is divided between both sides of the distribution. Therefore, when looking up the t-value in the table, we simply find the given area in the row labeled “Area in Two Tails” as shown in the following excerpt from the table. So the value of t for a t-distribution with 7 degrees of freedom such that the total area in the two tails is 0.02 is t =

HAWKES LEARNING SYSTEMS Students Matter. Success Counts. Copyright © 2013 by Hawkes Learning Systems/Quant Systems, Inc. All rights reserved. Example 8.12: Finding the Value of t Given the Area in Two Tails (cont.) df Area in One Tail Area in Two Tails

HAWKES LEARNING SYSTEMS Students Matter. Success Counts. Copyright © 2013 by Hawkes Learning Systems/Quant Systems, Inc. All rights reserved. Example 8.12: Finding the Value of t Given the Area in Two Tails (cont.) To use a TI-84 Plus calculator to find t given the area in two tails, you need to enter the area in the left tail only. Since the problem indicates that the area is divided between both ends, we must divide the area in half before we use the calculator. Therefore, we calculate the area in one tail as follows:

HAWKES LEARNING SYSTEMS Students Matter. Success Counts. Copyright © 2013 by Hawkes Learning Systems/Quant Systems, Inc. All rights reserved. Example 8.12: Finding the Value of t Given the Area in Two Tails (cont.) Press and then to go to the DISTR menu. Choose option 4:invT(. Enter invT(0.01,7). Notice that the value of t that is returned is negative, If you want the positive value of t, just ignore the negative sign since the t-distribution is symmetric.

HAWKES LEARNING SYSTEMS Students Matter. Success Counts. Copyright © 2013 by Hawkes Learning Systems/Quant Systems, Inc. All rights reserved. Example 8.13: Finding the Value of t Given Area between  t and t Find the critical value of t for a t-distribution with 29 degrees of freedom such that the area between −t and t is 99%.

HAWKES LEARNING SYSTEMS Students Matter. Success Counts. Copyright © 2013 by Hawkes Learning Systems/Quant Systems, Inc. All rights reserved. Example 8.13: Finding the Value of t Given Area between  t and t (cont.) Solution Since 99% of the area under the curve is in the middle, that leaves 1%, or 0.01 of the area in the two tails. Since the t-distribution has 29 degrees of freedom, look across the row for df = 29 and down the column for an area in two tails of Thus, t =

HAWKES LEARNING SYSTEMS Students Matter. Success Counts. Copyright © 2013 by Hawkes Learning Systems/Quant Systems, Inc. All rights reserved. Example 8.13: Finding the Value of t Given Area between  t and t (cont.) df Area in One Tail Area in Two Tails

HAWKES LEARNING SYSTEMS Students Matter. Success Counts. Copyright © 2013 by Hawkes Learning Systems/Quant Systems, Inc. All rights reserved. Example 8.13: Finding the Value of t Given Area between  t and t (cont.) To use a TI-84 Plus calculator to find t, you need to enter the area in the left tail only. We have determined that the area in two tails is Thus, we calculate the area in one tail as follows:

HAWKES LEARNING SYSTEMS Students Matter. Success Counts. Copyright © 2013 by Hawkes Learning Systems/Quant Systems, Inc. All rights reserved. Example 8.13: Finding the Value of t Given Area between  t and t (cont.) Press and then to go to the DISTR menu. Choose option 4:invT(. Enter invT(0.005,29). Notice that the value of t that is returned is negative, If you want the positive value of t, just ignore the negative sign since the t-distribution is symmetric.

HAWKES LEARNING SYSTEMS Students Matter. Success Counts. Copyright © 2013 by Hawkes Learning Systems/Quant Systems, Inc. All rights reserved. Example 8.14: Finding the Critical t-Value for a Confidence Interval Find the critical t-value for a 95% confidence interval using a t-distribution with 24 degrees of freedom. Solution

HAWKES LEARNING SYSTEMS Students Matter. Success Counts. Copyright © 2013 by Hawkes Learning Systems/Quant Systems, Inc. All rights reserved. Example 8.14: Finding the Critical t-Value for a Confidence Interval (cont.) Since we are looking for the critical value for a 95% confidence interval, we want to find the value of t such that the area between is If the area under the curve between the two t-values is c = 0.95, then  = 1 − c = 1 − 0.95 = 0.05 is the area in the two tails. Since the t-distribution has 24 degrees of freedom and the area in two tails is 0.05, looking across the row for df = 24 and down the column for an area in two tails of 0.050, we find a critical t-value of

HAWKES LEARNING SYSTEMS Students Matter. Success Counts. Copyright © 2013 by Hawkes Learning Systems/Quant Systems, Inc. All rights reserved. Example 8.14: Finding the Critical t-Value for a Confidence Interval (cont.) df Area in One Tail Area in Two Tails

HAWKES LEARNING SYSTEMS Students Matter. Success Counts. Copyright © 2013 by Hawkes Learning Systems/Quant Systems, Inc. All rights reserved. Example 8.14: Finding the Critical t-Value for a Confidence Interval (cont.) To use a TI-84 Plus calculator to find t, you need to enter the area in the left tail only. We have determined that the area in two tails is Thus, we calculate the area in one tail as follows:

HAWKES LEARNING SYSTEMS Students Matter. Success Counts. Copyright © 2013 by Hawkes Learning Systems/Quant Systems, Inc. All rights reserved. Example 8.14: Finding the Critical t-Value for a Confidence Interval (cont.) Press and then to go to the DISTR menu. Choose option 4:invT(. Enter invT(0.025,24). Notice that the value of t that is returned is negative, If you want the positive value of t, just ignore the negative sign since the t-distribution is symmetric.