New Laboratory and Theoretical Studies of Astrophysically Important Reactions of H 3 + Ben McCall Dept. of ChemistryDept. of Astronomy.

Slides:



Advertisements
Similar presentations
Mats Larsson Stockholm University. Oka 1999 The 2001 year crisis The clouds are dispersing Outstanding questions Outlook.
Advertisements

Dissociative Recombination of Cold H 3 + and its Interstellar Implications  T. Oka (University of Chicago), T. R. Geballe (Gemini Observatory)  A. J.
Implications of the H H 2  H 2 + H 3 + reaction for the ortho- to para-H 3 + ratio in interstellar clouds Kyle N. Crabtree, Lt. Col. Brian A. Tom,
OXYGEN-18 STUDIES OF HOCO AND HONO FORMATION Oscar Martinez Jr. and Michael C. McCarthy Harvard-Smithsonian Center for Astrophysics School of Engineering.
The ortho-H 2 abundance and the age of molecular clouds Laurent Pagani LERMA, UMR8112 du CNRS, Observatoire de Paris.
Benjamin McCall and Takeshi Oka University of Chicago Kenneth H. Hinkle National Optical Astronomy Observatories Thomas R. Geballe Joint Astronomy Centre.
The Non-Thermal Rotational Distribution of Interstellar H 3 + (ApJ, in press ) Takeshi Oka and Erik Epp, Department of Astronomy and Astrophysics, and.
The (3, 3) metastable rotational level of H 3 + Takeshi Oka Department of Chemistry and Department of Astronomy and Astrophysics The Enrico Fermi Institute,
Galactic Center Region Concentrated stars and interstellar matter High Energy Density (gravity, MHD, kinetic) Strong magnetic field :B ~ mG High external.
Hot and Diffuse Gas near the Galactic Center Probed by Metastable H 3 + Thomas R. Geballe Gemini Observatory Miwa Goto Max Planck Institute for Astronomy.
Hot and Diffuse Gas near the Galactic Center Probed by Metastable H 3 + Thomas R. Geballe Gemini Observatory Miwa Goto Max-Planck-Institut für Astronomie.
Warm and Diffuse Gas and High Ionizzation Rate Near the Galactic Center from 140 pc West to 85 pc East of Sgr A* 66th OSU International Symposium, June.
Laboratory spectroscopy of H3+
Unification of Sciences: Astronomy, Physics, and Chemistry I
Physics, Chemistry and Astronomy of H 3 + Royal Society Discussion Meeting And the Satellite Meeting January 16-18, 2006.
The Galactic center region Concentrated stars and interstellar matter High energy density (gravity, MHD, kinetic) Strong magnetic field :B ~ mG High external.
H 3 +, the new probe for ionization rate  Takeshi Oka Department of Astronomy and Astrophysics and Department of Chemistry The Enrico Fermi Institute,
Millimeter/Submillimeter Spectroscopy of Prebiotic Molecules Formed from the O( 1 D) Insertion Into Methylamine Brian Hays, Althea Roy, and Susanna Widicus.
Computational Study and Laboratory Spectroscopy of Prebiotic Molecules Produced by O( 1 D) Insertion Reactions Brian Hays, Bridget Alligood DePrince, and.
Storage ring measurements of the dissociative recombination of H 3 + : a closer look Holger Kreckel University of Illinois at Urbana-Champaign Kyle N.
Towards High Resolution Cavity Enhanced Spectroscopy with Fast ion Beams Andrew Mills, Brian Siller, Manori Perera, Holger Kreckel, Ben McCall.
Progress in measurements of dissociative recombination CRP on Atomic and Molecular Data for Plasma Modelling Mats Larsson Department of Physics Stockholm.
Storage ring measurements of the Dissociative Recombination of H 3 + : a closer look Holger Kreckel University of Illinois at Urbana-Champaign A fundamental.
Holger Kreckel, Andrew Mills, Manori Perera, Brian Siller, Kyle Crabtree, Carrie Kauffman, Benjamin J. McCall University of Illinois at Urbana-Champaign.
New High Precision Linelist of H 3 + James N. Hodges, Adam J. Perry, Charles R. Markus, Paul A. Jenkins II, G. Stephen Kocheril, and Benjamin J. McCall.
Spectroscopic Studies of the H H 2 Reaction at Astrophysically Relevant Temperatures Brian A. Tom, Brett A. McGuire, Lauren E. Moore, Thomas J. Wood,
Forschergruppe Laboratory Astrophysics Interstellar Molecules.
Instrumentation in the Molecular Physics Group Presented by: Mats Larsson.
H 3 + : A Case Study for the Importance of Molecular Laboratory Astrophysics Ben McCall Dept. of ChemistryDept. of Astronomy.
T. Oka, PRL 45,531 (1980) What is H 3 + ?  2y 2x  Equilateral triangle structure  Simplest stable polyatomic molecule  No stable excited electronic.
A Search for the 8.5  m Vibrational Spectrum of C 60 in the Laboratory and Space Susanna L. Widicus Weaver 1, Brian E. Brumfield 1, Andrew A. Mills 1,
Why H 3 + ??? Bethany A. Wellen, Andrew S. Petit, and Anne B. McCoy The Ohio State University Using Diffusion Monte Carlo (DMC) to Probe the Rotationally.
Observations of OH + and H 2 O + Across the Galaxy with Herschel Nick Indriolo 1, David Neufeld 1, Maryvonne Gerin 2, & PRISMAS consortium 1 – Johns Hopkins.
Dark Cloud Modeling of the Abundance Ratio of Ortho-to-Para Cyclic C 3 H 2 In Hee Park & Eric Herbst The Ohio State University Yusuke Morisawa & Takamasa.
H 3 + Toward and Within the Galactic Center Tom Geballe, Gemini Observatory With thanks to Takeshi Oka, Ben McCall, Miwa Goto, Tomonori Usuda.
Observations of H 3 + The Initiator of Interstellar Chemistry Benjamin McCall Oka Ion Factory University of Chicago Thomas Geballe Gemini Observatory (HI)
Electron-impact rotational excitation of H 3 + : relevance for thermalization and dissociation Alexandre Faure* Laurent Wiesenfeld* & Jonathan Tennyson.
High Precision, Sensitive, Near-IR Spectroscopy in a Fast Ion Beam Michael Porambo, Holger Kreckel, Andrew Mills, Manori Perera, Brian Siller, Benjamin.
November 6, 2010 MWAM 2010 University of Illinois1 The ortho:para ratio of H 3 + in diffuse molecular clouds Kyle N. Crabtree, Nick Indriolo, Holger Kreckel,
FC10; June 25, 2010Image credit: Gerhard Bachmayer Constraining the Flux of Low- Energy Cosmic Rays Accelerated by the Supernova Remnant IC 443 N. Indriolo.
PROGRESS & RESULTS IN THE DEVELOPMENTS OF THE SENSITIVE, COOLED, RESOLVED ION BEAM SPECTROMETER (SCRIBES) Andrew Mills, Brian Siller, Michael Porambo,
Analysis of OH +, H 2 O +, and H 3 + in a Diffuse Molecular Cloud Toward W51 Nick Indriolo 1, David Neufeld 1, Maryvonne Gerin 2, & Tom Geballe 3 1 – Johns.
Electron-molecule collisions in harsh astronomical environments Alexandre Faure 1 & Jonathan Tennyson 2 1 Université de Grenoble / CNRS, France 2 University.
Observation Of Nuclear Spin Selection Rules In Supersonically Expanding Plasmas Containing H 3 + Brian Tom, Michael Wiczer, Andrew Mills, Kyle Crabtree,
Cavity Ringdown Spectroscopy of Molecular Ions in a Fast Ion Beam Susanna L. Widicus Weaver, Andrew A. Mills, and Benjamin J. McCall Departments of Chemistry.
Methanol Photodissociation Branching Ratios and Their Influence on Interstellar Organic Chemistry Thank you Susanna. So I’ve been combining both laboratory.
Spontaneous Emission between ortho and para- levels of Water-Ion, H 2 O + Keiichi TANAKA K.Harada, S.Nanbu T.Oka MG06, Ohio, 2012 Herschel Space Telescope.
The low-temperature nuclear spin equilibrium of H 3 + in collisions with H 2 Kyle N. Crabtree, * Benjamin J. McCall University of Illinois, Urbana, IL.
INDIRECT TERAHERTZ SPECTROSCOPY OF MOLECULAR IONS USING HIGHLY ACCURATE AND PRECISE MID-IR SPECTROSCOPY Andrew A. Mills, Kyle B. Ford, Holger Kreckel,
Modeling the influence of nuclear spin in the reaction of H 3 + with H 2 Kyle N. Crabtree, Brian A. Tom, and Benjamin J. McCall University of Illinois.
June 18, 2008The University of Illinois 1 Continuous-wave Cavity Ringdown Study of the First Positive Band System of N 2 * Brett A. McGuire Susanna L.
Development of a Fast Ion Beam Spectrometer for Molecular Ion Spectroscopy Departments of Chemistry and Astronomy University of Illinois at Urbana-Champaign.
Initial Development of High Precision, High Resolution Ion Beam Spectrometer in the Near- Infrared Michael Porambo, Brian Siller, Andrew Mills, Manori.
June 19, 2008University of Illinois at Urbana-Champaign 1 Constraining the Low-Energy Cosmic Ray Spectrum Nick Indriolo, Brian D. Fields, Benjamin J. McCall.
SCRIBES Sensitive Cooled Resolved Ion BEam Spectroscopy
The Performance Of A Continuous Supersonic Expansion Discharge Source
The Performance Of A Continuous Supersonic Expansion Discharge Source
Introductory remarks Takeshi Oka
Mid-IR Direct Absorption/Dispersion Spectroscopy of a Fast Ion Beam
Nuclear Spin Dependence of the Reaction of H3+ with H2
Is HO2+ a Detectable Interstellar Molecule?
The H3+ + H2 Reaction; A Possible Mechanism for para- H3+ Enrichment in the Diffuse Interstellar Medium Lieutenant Colonel Brian A. Tom, USAF University.
Ab initio predictions for HO2+: Theoretical Guidance for an Astronomical Detectability Study David E. Woon, Susanna L. Widicus Weaver, Branko Ruscic, and.
Nick Indriolo1, Thomas R. Geballe2, Takeshi Oka3, and Benjamin J
Probing Cosmic-Ray Acceleration and Propagation with H3+ Observations
Spectroscopic measurements of the reaction H3+ + H2  H2 + H3+
Can We Use Metastable Helium to Trace the Cosmic-Ray Ionization Rate?
Investigating the Cosmic-Ray Ionization Rate in the Galactic Interstellar Medium through Observations of H3+ Nick Indriolo,1 Ben McCall,1 Tom Geballe,2.
International Symposium on Molecular Spectroscopy
Nuclear spin of H3+ in diffuse molecular clouds
Presentation transcript:

New Laboratory and Theoretical Studies of Astrophysically Important Reactions of H 3 + Ben McCall Dept. of ChemistryDept. of Astronomy

Outline Background –Importance of H 3 + –Interstellar Clouds H 3 + in Diffuse Clouds –Abundance: H e - → H + H + H –Ortho/Para: p-H e - → H + H + H H H 2 → H H 2 H 3 + in Dense Clouds –Abundance: H O → OH + + H 2 –Puzzle: H O 2 ↔ HO H 2

Astronomer's Periodic Table H He CN O Ne Mg Fe SiS Ar

H 3 + : Cornerstone of Interstellar Chemistry N O2O2 H2H2 O N2N2 CO 2 CH 4 OH C C2C2 H2OH2O H 2 CO CH NH 2 Si NH 3 CO Proton Affinity (eV) H O  H 2 + OH + OH + + H 2  H + H 2 O + H 2 O + + H 2  H + H 3 O + H 3 O + + e -  H 2 O + H

Interstellar Cloud Classification Diffuse clouds: H ↔ H 2 C  C + n(H 2 ) ~ 10 1 –10 3 cm -3 –[~ Torr] T ~ 50 K  Persei Photo: Jose Fernandez Garcia Snow & McCall ARAA, 44, 367 (2006) Dense molecular clouds: H  H 2 C  CO n(H 2 ) ~ 10 4 –10 6 cm -3 T ~ 20 K Pound ApJ 493, L113 (1998)

Outline Background –Importance of H 3 + –Interstellar Clouds H 3 + in Diffuse Clouds –Abundance: H e - → H + H + H –Ortho/Para: p-H e - → H + H + H H H 2 → H H 2 H 3 + in Dense Clouds –Abundance: H O → OH + + H 2 –Puzzle: H O 2 ↔ HO H 2

Rate = k e [H 3 + ] [e - ]  [H 2 ] Diffuse Cloud H 3 + Chemistry H 2 H e - H 2 + H 2 +  H H cosmic ray H e -  H + H 2 or 3H Rate = Formation Destruction [H 3 + ]  = keke [e - ] Steady State [H 2 ] = (3  s -1 ) (5  cm 3 s -1 )  (2400) = cm -3 L ~ 3 pc ~ cm N(H 3 + ) ≡ L × [H 3 + ] ~ cm -2 dense cloud value  Δ I/I ~ 0.01%

Lots of H 3 + in Diffuse Clouds! HD McCall, et al. ApJ 567, 391 (2002) Cygnus OB2 12 N(H 3 + ) ~ cm -2 ?!?

Big Problem with the Chemistry! Steady State: [H 3 + ]  = keke [e - ] [H 2 ] To increase the value of [H 3 + ], we need: Smaller electron fraction [e - ]/[H 2 ] Smaller recombination rate constant k e Higher ionization rate  (order of magnitude) ^ ruled out by observations

Enigma of H 3 + Recombination Laboratory values of k e have varied by 4 orders of magnitude! Problem: not measuring H 3 + in ground states k e (cm 3 s -1 ) Larsson, McCall, & Orel Chem. Phys. Lett., in press

Ion Storage Ring Measurements 20 ns 45 ns electron beam H3+H3+ H, H 2 +Very simple experiment +Complete vibrational relaxation +Control H 3 + – e - impact energy +Rotationally cold ions from supersonic expansion source CRYRING 30 kV 900 keV 12.1 MeV

CRYRING Results Considerable amount of structure (resonances) in the cross-section k e = 2.6  cm 3 s -1 Factor of two smaller McCall et al. Nature 422, 500 (2003)

Agreement with Other Work Reasonable agreement between: –CRYRING Supersonic expansion –TSR 22-pole trap –Theory S.F. dos Santos, V. Kokoouline, and C. H. Greene, J. Chem. Phys. 127 (2007)

Big Problem with the Chemistry! Steady State: [H 3 + ]  = keke [e - ] [H 2 ] To increase the value of [H 3 + ], we need: Smaller electron fraction [e - ]/[H 2 ] Smaller recombination rate constant k e Higher ionization rate  =7.4  s -1 (25× higher than dense clouds!) N. Indriolo, T. R. Geballe, T. Oka, & B. J. McCall, ApJ 671, 1736 (2007) Astrophysics!!

Low Energy Cosmic Rays? Flux below <1 GeV essentially unconstrained –magnetic field due to solar wind Large low E flux can reproduce observations! Photo: M.D. Stage, G. E. Allen, J. C. Houck, J. E. Davis, Nat. Phys. 2, 614 (2006) 1 MeV 2 MeV 10 MeV 20 MeV 50 MeV (diffuse) (dense) N. Indriolo, B. D. Fields & B. J. McCall, in preparation

Outline Background –Importance of H 3 + –Interstellar Clouds H 3 + in Diffuse Clouds –Abundance: H e - → H + H + H –Ortho/Para: p-H e - → H + H + H H H 2 → H H 2 H 3 + in Dense Clouds –Abundance: H O → OH + + H 2 –Puzzle: H O 2 ↔ HO H 2

H 3 + Ortho/Para Ratio + ortho I = 3/2 para I = 1/2 + Cygnus OB2 12 NoNo NpNp gogo gpgp e -ΔE/kT ex = ΔEΔE R(1,0) R(1,1) T ex ~ 27 K but T kin ~ 60 K Why?

para-H e - vs. ortho-H e - Theory: S.F. dos Santos, V. Kokoouline, and C. H. Greene, J. Chem. Phys. 127, (2007) normal H 2 para H 2 experiment para-H 3 + ortho-H 3 + theory Experiment: H. Kreckel, et al. Phys. Rev. Lett. 95, (2005) TSR K para-H 3 + fraction unknown (~0.55?)

Recent CRYRING Results 85% p-H 3 + [100% p-H 3 + ] 50% p-H 3 + [100% o-H 3 + ] ×2! B. Tom et al., in preparation Big ortho-para difference But ortho/para H 3 + may be equilibrated by H H 2 collisions

Outline Background –Importance of H 3 + –Interstellar Clouds H 3 + in Diffuse Clouds –Abundance: H e - → H + H + H –Ortho/Para: p-H e - → H + H + H H H 2 → H H 2 H 3 + in Dense Clouds –Abundance: H O → OH + + H 2 –Puzzle: H O 2 ↔ HO H 2

H H 2 → (H 5 + )* → H H 2 “identity” “hop” “exchange” H5+H if purely statistical: α = hop/exchange = 0.5

Dynamical Effects C 2v D 2d C 2v “hop” “exchange” Not obvious that “statistical” α = hop/exchange = 0.5 is valid! ~3000 cm -1 ~50 cm -1 ~1500 cm -1

Energetic Effects Angular momentum restrictions –e.g. p-H p-H 2 → o-H p-H 2 At low T in pure p-H 2, slow p-H 3 + → o-H 3 + ortho I = 3/2 para I = 1/2 para I = 0 ortho I = K 1/2  0 ↔ 3/2  0

Oka Group Experiments o-H 3 + p-H 3 + Pulsed Hollow Cathode Positive Column Cell Cordonnier et al. JCP 113, 3181 (2000) p-H 2 n-H 2 o-H 3 + p-H 3 + n-H 2 p-H 2 hop exch ~2.4 T ~ 400 K α = ≠ 0.5! How does α vary with T?

Supersonic Expansion Ion Source H 3 + formed near nozzle [p-H 2 ] / [H 2 ] fixed –[H 2 ] / [H 3 + ] >> N collisions [p-H 3 + ] / [H 3 + ] reaches steady state in few coll. [p-H 3 + ] / [H 3 + ] measured spectroscopically H2H2 Gas inlet 2 atm Solenoid valve -450 V ring electrode Pinhole flange/ground electrode H3+H3+ McCall et al. PRA 70, (2004)

2.8 – 4.8  m DFG System Ti:Sapph 700 – 990 nm 532 nm pump laser reference cavity dichroic /2 Nd:YAG 1064 nm AOM PPLN 25cm 20cm /2 /4 Glan prism 20cm achromat InSb mode- matching lenses ringdown cavity

Cavity Ringdown Spectra First results from our DFG laser! Clear enhancement of para-H 3 + in para-H 2 More enhanced in argon dilution T rot ~ 80 K –R(1,1) u vs R(2,2) l ortho-H 3 + para-H 3 +

H H 2 Results α=2.5 α=1.0 α= K Park & Light JCP 126, (2007) ζ Persei T ex o/p H 3 + ratio not thermal, but steady state of H H 2 (Oka) T kin ~60 K

Outline Background –Importance of H 3 + –Interstellar Clouds H 3 + in Diffuse Clouds –Abundance: H e - → H + H + H –Ortho/Para: p-H e - → H + H + H H H 2 → H H 2 H 3 + in Dense Clouds –Abundance: H O → OH + + H 2 –Puzzle: H O 2 ↔ HO H 2

N O Ne H 3 + in Dense Clouds C CO N O2O2 H2H2 O N2N2 CO 2 CH 4 OH C C2C2 H2OH2O CH CO Proton Affinity (eV) H Ne He Relatively few electrons C → CO H 3 + destroyed by proton transfer –CO –O, O 2 ? ?

ζ [H 2 ] Dense Cloud H 3 + Chemistry H 2 H e - H 2 + H 2 +  H H cosmic ray H CO  HCO + + H 2 Rate = Formation Destruction Rate = k CO [H 3 + ] [CO] ζ [H 3 + ] = k CO [CO] Steady State = (3  s -1 ) (2  cm 3 s -1 ) [H 2 ]  (6700) = cm -3 (fast) McCall, Geballe, Hinkle, & Oka ApJ 522, 338 (1999) L ~ 1 pc ~ 3×10 18 cm → N(H 3 + ) ~ 3×10 14 cm -2 H O  OH + + H 2 Rate = k O [H 3 + ] [O] 2  cm 3 s  cm 3 s -1 = ??

H O → OH + + H 2 Stephen Klippenstein (2008) Ryan Bettens (1999) At T<50, k O  k CO  ζ or L ↑ by factor of ~2 T cloud

Outline Background –Importance of H 3 + –Interstellar Clouds H 3 + in Diffuse Clouds –Abundance: H e - → H + H + H –Ortho/Para: p-H e - → H + H + H H H 2 → H H 2 H 3 + in Dense Clouds –Abundance: H O → OH + + H 2 –Puzzle: H O 2 ↔ HO H 2

H O 2 ↔ HO H 2 HO 2 + is last simple protonated species yet to be observed spectroscopically O 2 difficult to observe in dense clouds; HO 2 + may be a useful tracer? Nearly thermoneutral formation reaction Our work: –Re-examine thermochemistry –Calculate spectroscopic constants S. L. Widicus Weaver, D. E. Woon, B. Ruscic, and B. J. McCall, in preparation

Thermochemical Calculations Active Thermochemical Tables (ATcT) –PA 0 K (O 2 ) = ± 0.11 kJ/mol –PA 0 K (H 2 ) = ± 0.01 kJ/mol –Δ r E 0 = 0.60 ± 0.11 kJ/mol = 50 ± 9 cm -1 Ab initio calculations –ΔE e valence complete basis set (CBS) limit: cm -1 –ΔE e core-valence contribution –harmonic vibrational ZPE correction –anharmonic vibrational ZPE correction –rotational ZPE correction –ΔE 0 net+64.3 cm -1 Branko Ruscic (Argonne) Dave Woon (Illinois) S. L. Widicus Weaver, D. E. Woon, B. Ruscic, and B. J. McCall, in preparation

Interstellar Abundance of HO 2 +  r H° 298 = 1.31 ± 0.11 kJ/mol  r G° 298 = ± 0.11 kJ/mol )H( )O( )H( n n nK T   )HO( 2 n  = 2 × (10 -4 cm -3 ) × (10 -4 ) N(HO 2 + ) = n(HO 2 + ) L ~ (2×10 -8 cm -3 )(3×10 18 cm) ~ 6×10 10 cm -2 (likely undetectable) S. L. Widicus Weaver, D. E. Woon, B. Ruscic, and B. J. McCall, in preparation

HO 2 + Spectroscopic Constants S. L. Widicus Weaver, D. E. Woon, B. Ruscic, and B. J. McCall, in preparation

Acknowledgments NASA Laboratory Astrophysics NSF Chemistry, AMO Physics H 3 + Observations: Takeshi Oka (U. Chicago) Tom Geballe (Gemini) Storage Ring Measurements: Mats Larsson (Stockholm) Richard Thomas (Stockholm) Cosmic Ray Theory: Brian Fields (Illinois) H H 2 : Kisam Park (U. Chicago → TTU) H O: Stephen Klippenstein (Argonne) H O 2 : Susanna Widicus Weaver (Illinois → Emory) Dave Woon (Illinois) Branko Ruscic (Argonne) Brian Tom Nick Indriolo Kyle Crabtree Michael Wiczer Andrew Mills [and many others] Critical Research Initiative

Spin-Modification Probability Total Io-H o-H 2 o-H p-H 2 p-H o-H 2 p-H p-H 2 o-H o-H 2 5/ /24/91/3605/125/9 00 1/21/9 008/92/902/3 o-H p-H 2 3/205/1201/411/300 p-H o-H 2 3/25/9 11/34/910/900 1/28/92/9001/917/1815/6 p-H p-H 2 1/202/30015/611/2 Reactants Products formed by Hop and Exchange Park & Light JCP 126, (2007)