Chapter 2: Boolean Algebra and Logic Gates. F 1 = XY’ + X’Z XYZX’Y’XY’X’ZF1F1 00011000 00111011 01010000 01110011 10001101 10101101 11000000 11100000.

Slides:



Advertisements
Similar presentations
Boolean Algebra and Logic Gates
Advertisements

ECE 331 – Digital System Design Boolean Algebra (Lecture #3) The slides included herein were taken from the materials accompanying Fundamentals of Logic.
ECE 331 – Digital System Design
CS 151 Digital Systems Design Lecture 6 More Boolean Algebra A B.
Boolean Algebra and Logic Gates
28/06/041 CSE-221 Digital Logic Design (DLD) Lecture-5: Canonical and Standard forms and Integrated Circuites.
Chapter 2: Boolean Algebra and Logic Functions
Chapter 2 Boolean Algebra and Logic Gates
Logic Design CS221 1 st Term Boolean Algebra Cairo University Faculty of Computers and Information.
1 Why study Boolean Algebra? 4 It is highly desirable to find the simplest circuit implementation (logic) with the smallest number of gates or wires. We.
9/15/09 - L6 Standard FormsCopyright Joanne DeGroat, ECE, OSU1 Standard Forms.
IKI a-Boolean Algebra Bobby Nazief Semester-I The materials on these slides are adopted from those in CS231’s Lecture Notes at UIUC,
Switching functions The postulates and sets of Boolean logic are presented in generic terms without the elements of K being specified In EE we need to.
ECE 331 – Digital System Design
1 Representation of Logic Circuits EE 208 – Logic Design Chapter 2 Sohaib Majzoub.
©2004 Brooks/Cole FIGURES FOR CHAPTER 2 BOOLEAN ALGEBRA Click the mouse to move to the next page. Use the ESC key to exit this chapter. This chapter in.
Ahmad Almulhem, KFUPM 2009 COE 202: Digital Logic Design Combinational Logic Part 2 Dr. Ahmad Almulhem ahmadsm AT kfupm Phone: Office:
Logic Design Dr. Yosry A. Azzam.
Boolean Logic and Circuits ELEC 311 Digital Logic and Circuits Dr. Ron Hayne Images Courtesy of Cengage Learning.
CHAPTER 3: PRINCIPLES OF COMBINATIONAL LOGIC
Venn Diagram – the visual aid in verifying theorems and properties 1 E.
Boolean Algebra and Logic Gates
Chap 2. Combinational Logic Circuits
ENGIN112 L6: More Boolean Algebra September 15, 2003 ENGIN 112 Intro to Electrical and Computer Engineering Lecture 6 More Boolean Algebra A B.
ece Parity Used to check for errors Can be either ODD or EVEN Left most bit used as the indicator For EVEN, insert a 0 or a 1 so as to make the.
A. Abhari CPS2131 Chapter 2: Boolean Algebra and Logic Gates Topics in this Chapter: Boolean Algebra Boolean Functions Boolean Function Simplification.
1 Lect # 2 Boolean Algebra and Logic Gates Boolean algebra defines rules for manipulating symbolic binary logic expressions. –a symbolic binary logic expression.
© BYU 03 BA1 Page 1 ECEn 224 Boolean Algebra – Part 1.
Module –I Switching Function
BOOLEAN ALGEBRA Kamrul Ahsan Teacher of
Binary Logic and Gates Boolean Algebra Canonical and Standard Forms Chapter 2: Boolean Algebra and Logic Gates.
Boolean Algebra & Logic Circuits Dr. Ahmed El-Bialy Dr. Sahar Fawzy.
CONSENSUS THEOREM Choopan Rattanapoka.
Conversion from one number base to another Binary arithmetic Equation simplification DeMorgan’s Laws Conversion to/from SOP/POS Reading equations from.
Module 5.  In Module 3, you have learned the concept of Boolean Algebra which consists of binary variables and binary operator.  A binary variable x,
BOOLEAN ALGEBRA – Digital Circuit 1 Choopan Rattanapoka.
Chapter 2: Basic Definitions BB inary Operators ●A●AND z = x y = x yz=1 if x=1 AND y=1 ●O●OR z = x + yz=1 if x=1 OR y=1 ●N●NOT z = x = x’ z=1 if x=0.
Lecture 18: Boolean Algebra Boolean Functions. w = Chris is allowed to watch television x = Chris's homework is finished y = it is a school night z =
ECEN 248: INTRODUCTION TO DIGITAL SYSTEMS DESIGN Lecture 4 Dr. Shi Dept. of Electrical and Computer Engineering.
Review. Boolean Algebra.
ECE DIGITAL LOGIC LECTURE 8: BOOLEAN FUNCTIONS Assistant Prof. Fareena Saqib Florida Institute of Technology Spring 2016, 02/11/2016.
Boolean Algebra ELEC 311 Digital Logic and Circuits Dr. Ron Hayne Images Courtesy of Cengage Learning.
Lecture 5 More Boolean Algebra A B. Overview °Expressing Boolean functions °Relationships between algebraic equations, symbols, and truth tables °Simplification.
CSE 260 BRAC University.
Fuw-Yi Yang1 數位系統 Digital Systems Department of Computer Science and Information Engineering, Chaoyang University of Technology 朝陽科技大學資工系 Speaker: Fuw-Yi.
©2010 Cengage Learning SLIDES FOR CHAPTER 3 BOOLEAN ALGEBRA (continued) Click the mouse to move to the next page. Use the ESC key to exit this chapter.
CHAPTER 2 Boolean algebra and Logic gates
CE1110: Digital Logic Design Gate Level Minimization Karnaugh Maps (K-Maps)
Speaker: Fuw-Yi Yang 楊伏夷 伏夷非征番, 道德經 察政章(Chapter 58) 伏者潛藏也
Table 2.1 Postulates and Theorems of Boolean Algebra
Boolean Algebra.
CS 105 Digital Logic Design
CHAPTER 2 Boolean Algebra
Complement of a Function
CHAPTER 2 Boolean Algebra This chapter in the book includes:
Princess Sumaya University
Boolean Algebra – Part 1 ECEn 224.
SLIDES FOR CHAPTER 2 BOOLEAN ALGEBRA
FIGURES FOR CHAPTER 2 BOOLEAN ALGEBRA
ECE 331 – Digital System Design
Speaker: Fuw-Yi Yang 楊伏夷 伏夷非征番, 道德經 察政章(Chapter 58) 伏者潛藏也
17-Nov-18 Logic Algebra 1 Combinational logic.
Boolean Algebra.
Lecture 14: Boolean Algebra
Chapter 2 Boolean Algebra and Logic Gate
2. Boolean Algebra and Logic Gates
Table 2.1 Postulates and Theorems of Boolean Algebra
Digital Logic Chapter-2
Digital Logic Chapter-2
Analysis of Logic Circuits Example 1
Presentation transcript:

Chapter 2: Boolean Algebra and Logic Gates

F 1 = XY’ + X’Z XYZX’Y’XY’X’ZF1F F1F1

F 2 = X’Y’Z + X’YZ + XY’ XYZX’Y’X’Y’ZX’YZXY’F2F

XYZF1F1 F2F F1F1 F 2 = X’Y’Z + X’YZ + XY’ F 1 = XY’ + X’Z

F(x, y, z) = xy + x’z + yz = xy + x’z + yz.1 By Postulate 5(a) By Postulate 4(a) By Theorem 2

CANONICAL FORMS How to express a boolean function algebraically from a given truth table? XYZF F(x,y,z)=?

Summation of Minterms F(x,y,z)=? XYZTermDesignationF 000X’Y’Z’m0m X’Y’Zm1m X’YZ’m2m X’YZm3m XY’Z’m4m XY’Zm5m XYZ’m6m XYZm7m7 0

Summation of Minterms F(x,y,z)= m 1 + m 3 + m 4 + m 5 = X’Y’Z+X’YZ+XY’Z’+XY’Z =∑(1, 3, 4, 5) XYZTermDesignationF 000X’Y’Z’m0m X’Y’Zm1m X’YZ’m2m X’YZm3m XY’Z’m4m XY’Zm5m XYZ’m6m XYZm7m7 0

Summation of Minterms F(x,y,z)= m 1 + m 3 + m 4 + m 5 = X’Y’Z+X’YZ+XY’Z’+XY’Z =∑(1, 3, 4, 5) F’ = m 0 + m 2 + m 6 + m 7 = X’Y’Z’+X’YZ’+XYZ’+XYZ XYZTermDesignationF 000X’Y’Z’m0m X’Y’Zm1m X’YZ’m2m X’YZm3m XY’Z’m4m XY’Zm5m XYZ’m6m XYZm7m7 0

F(x,y,z)=? XYZTermDesignationF 000X + Y + ZM0M X + Y + Z’M1M X + Y’ + ZM2M X + Y’ + Z’M3M X’ + Y + ZM4M X’ + Y + Z’M5M X’ + Y’ + ZM6M X’ + Y’ + Z’M7M7 0 Multiplication of Maxterms

By MinTerms, F = m 1 + m 3 + m 4 + m 5 = X’Y’Z+X’YZ+XY’Z’+XY’Z F’ = m 0 + m 2 + m 6 + m 7 = X’Y’Z’+X’YZ’+XYZ’+XYZ. => F = (X’Y’Z’+X’YZ’+XYZ’+XYZ)’ =(X+Y+Z) (X+Y’+Z) (X’+Y’+Z) (X’+Y’+Z’) XYZTermDesignationF 000X + Y + ZM0M X + Y + Z’M1M X + Y’ + ZM2M X + Y’ + Z’M3M X’ + Y + ZM4M X’ + Y + Z’M5M X’ + Y’ + ZM6M X’ + Y’ + Z’M7M7 0 Multiplication of Maxterms

By MinTerms, F = m 1 + m 3 + m 4 + m 5 = X’Y’Z+X’YZ+XY’Z’+XY’Z F’ = m 0 + m 2 + m 6 + m 7 = X’Y’Z’+X’YZ’+XYZ’+XYZ. => F = (X’Y’Z’+X’YZ’+XYZ’+XYZ)’ = (X+Y+Z) (X+Y’+Z) (X’+Y’+Z) (X’+Y’+Z’) = M 0 + M 2 + M 6 + M 7 = ∏ ( 0, 2, 6, 7) XYZTermDesignationF 000X + Y + ZM0M X + Y + Z’M1M X + Y’ + ZM2M X + Y’ + Z’M3M X’ + Y + ZM4M X’ + Y + Z’M5M X’ + Y’ + ZM6M X’ + Y’ + Z’M7M7 0

Boolean functions expressed as a sum of minterms or product of maxterms are called canonical form By MinTerms, F = m 1 + m 3 + m 4 + m 5 = ∑(1, 3, 4, 5) (function gives 1) By MaxTerms, F = M 0 M 2 M 6 M 7 = ∏ ( 0, 2, 6, 7) (function gives 0) XYZMinTermsDesignationMaxTermsDesignationF 000X’Y’Z’m0m0 X + Y + ZM0M X’Y’Zm1m1 X + Y + Z’M1M X’YZ’m2m2 X + Y’ + ZM2M X’YZm3m3 X + Y’ + Z’M3M XY’Z’m4m4 X’ + Y + ZM4M XY’Zm5m5 X’ + Y + Z’M5M XYZ’m6m6 X’ + Y’ + ZM6M XYZm7m7 X’ + Y’ + Z’M7M7 0 Conversion Between Canonical Forms

Function Expression in Canonical Form Express the Boolean function F = A + B’C as a sum of minterms (All variables must be present in each term) Process: 1 In each term, for each missing variable P, multiply (P+P’), until all the variables appear in each term Finally, if same term appears multiple times, discard multiple copies F = A + B’C = A(B+B’) + B’C(A+A’) = AB + AB’ + B’CA + B’CA’ = AB(C+C’) + AB’(C+C’) + B’CA + B’CA’ = ABC + ABC’ + AB’C + AB’C’ + AB’C + A’B’C = ABC + ABC’ + AB’C + AB’C’ + A’B’C = m7 + m6 + m5 + m4 + m1

Conversion to Canonical Form Express the Boolean function F = A + B’C as a sum of minterms. Process: 2 Draw the Truth Table Read the minterms from the truth table F = m1 + m4 + m5 + m6 + m7

Conversion to Canonical Form Express the Boolean function F = xy + x’z as a product of maxterms Process: 1 Convert the function into OR terms using the distributive law F = xy + x’z = (xy + x’) (xy + z) = (x + x’)(y + x’) (x + z)(y + z) = (x’ + y)(x + z)(y + z) For each missing variable P, add the PP’ with each term, until all the variables appear in each term. F = (x’ + y)(x + z)(y + z) = (x’ + y + zz’) (x + z + yy’) (y + z + xx’) = (x’ + y + z)(x’ + y + z’) (x + y + z)(x + y’ + z) (x + y + z)(x’ + y + z) = (x’ + y + z)(x’ + y + z’) (x + y + z)(x + y’ + z) Distributive Law: 1.X(Y+Z) = XY + XZ 2.X+(YZ) = (X+Y) (X+Z)

Conversion to Canonical Form Express the Boolean function F = xy + x’z as a product of maxterms Process: 2 Draw the Truth Table Read the maxterms from the truth table F = M 0 M 2 M 4 M 5 XYZF

Standard Form Each term in the function may contain one, two, or any number of literals F = y + xy + xyz Either the sum of products or the products of sums, not both! F = AB + C(D + E)  Non Standard Form = AB + CD + CE  Standard Form Some Standard Functions: F 1 = y’ + xy + x’yz’ (sum of products) F2 = x(y’ + z)(x’ + y + z’) (product of sums)

Common Logical operations