Development of n-in-p planar pixel sensors with active edge for the ATLAS High-Luminosity Upgrade L. Bosisio* Università degli Studi di Trieste & INFN.

Slides:



Advertisements
Similar presentations
P. Fernández-Martínez – Optimized LGAD Periphery25 th RD50 Workshop, CERN Nov Centro Nacional de MicroelectrónicaInstituto de Microelectrónica.
Advertisements

Giulio Pellegrini 4th SILC Collaboration Meeting, Dec. 2006, Barcelona, Spain Giulio Pellegrini 4th SILC Collaboration Meeting, Dec. 2006,
November 3-8, 2002D. Bortoletto - Vertex Silicon Sensors for CMS Daniela Bortoletto Purdue University Grad students: Kim Giolo, Amit Roy, Seunghee.
20th RD50 Workshop (Bari)1 G. PellegriniInstituto de Microelectrónica de Barcelona G. Pellegrini, C. Fleta, M. Lozano, D. Quirion, Ivan Vila, F. Muñoz.
Haga clic para modificar el estilo de texto del patrón Progress on p-type isolation technology M. Lozano, F. Campabadal, C. Fleta, S. Martí *, M. Miñano.
Summary of CMS 3D pixel sensors R&D Enver Alagoz 1 On behalf of CMS 3D collaboration 1 Physics Department, Purdue University, West Lafayette, IN
8/22/01Marina Artuso - Pixel Sensor Meeting - Aug Sensor R&D at Syracuse University Marina Artuso Chaouki Boulahouache Brian Gantz Paul Gelling.
11 th RD50 Workshop, CERN Nov Results with thin and standard p-type detectors after heavy neutron irradiation G. Casse.
Semi-conductor Detectors HEP and Accelerators Geoffrey Taylor ARC Centre for Particle Physics at the Terascale (CoEPP) The University of Melbourne.
ALBA Synchrotron – 17 June 2010 Centro Nacional de MicroelectrónicaInstituto de Microelectrónica de Barcelona First Measurements on 3D Strips Detectors.
Medipix sensors included in MP wafers 2 To achieve good spatial resolution through efficient charge collection: Produced by Micron Semiconductor on n-in-p.
1 G. Pellegrini The 9th LC-Spain meeting 8th "Trento" Workshop on Advanced Silicon Radiation Detectors 3D Double-Sided sensors for the CMS phase-2 vertex.
3D-FBK pixel sensors with CMS readout: first tests results M. Obertino, A. Solano, A. Vilela Pereira, E. Alagoz, J. Andresen, K. Arndt, G. Bolla, D. Bortoletto,
M. Lozano, C. Fleta*, G. Pellegrini, M. Ullán, F. Campabadal, J. M. Rafí CNM-IMB (CSIC), Barcelona, Spain (*) Currently at University of Glasgow, UK S.
Summary of CMS 3D pixel sensors R&D Enver Alagoz 1 On behalf of CMS 3D collaboration 1 Physics Department, Purdue University, West Lafayette, IN
Foundry Characteristics
Planar Pixels Sensors Activities in France. Phase-2 and core R&D activities in France -Development of sensor simulations models -Sensor technology Edgeless/active.
Silicon detector processing and technology: Part II
16 sept G.-F. Dalla BettaSCIPP Maurizio Boscardin a, Claudio Piemonte a, Alberto Pozza a, Sabina Ronchin a, Nicola Zorzi a, Gian-Franco Dalla Betta.
MIT Lincoln Laboratory NU Status-1 JAB 11/20/2015 Advanced Photodiode Development 7 April, 2000 James A. Burns ll.mit.edu.
Giulio Pellegrini 7th “Trento” Workshop on Advanced Silicon Radiation Detectors (3D and P-type Technologies) Status productions of 3D at CNM G. Pellegrini.
US ATLAS Upgrade Strip Meeting, Hartmut F.-W. Sadrozinski, SCIPP 1 Upgrade Silicon Strip Detectors (SSD) Hartmut F.-W. Sadrozinski SCIPP, UC Santa Cruz.
News on microstrip detector R&D —Quality assurance tests— Anton Lymanets, Johann Heuser 12 th CBM collaboration meeting Dubna, October
Thin Silicon R&D for LC applications D. Bortoletto Purdue University Status report Hybrid Pixel Detectors for LC.
Low Resistance Strip Sensors – RD50 Common Project – RD50/ CNM (Barcelona), SCIPP (Santa Cruz), IFIC (Valencia) Contact person: Miguel Ullán.
CERN, November 2005 Claudio Piemonte RD50 workshop Claudio Piemonte a, Maurizio Boscardin a, Alberto Pozza a, Sabina Ronchin a, Nicola Zorzi a, Gian-Franco.
N. Zorzi Trento, Feb 28 – Mar 1, 2005 Workshop on p-type detectors Characterization of n-on-p devices fabricated at ITC-irst Nicola Zorzi ITC-irst - Trento.
Simulations of 3D detectors
Technology Overview or Challenges of Future High Energy Particle Detection Tomasz Hemperek
H.-G. Moser Semiconductor Laboratory MPI for Physics, Munich 11th RD50 Workshop CERN Nov Thin planar pixel detectors for highest radiation levels.
A. Macchiolo, 13 th RD50 Workshop, CERN 11 th November Anna Macchiolo - MPP Munich N-in-n and n-in-p Pixel Sensor Production at CiS  Investigation.
Report on CMS 3D sensor tests Enver Alagoz 1 On behalf of CMS 3D collaboration 1 Physics Department, Purdue University, West Lafayette, IN
RD50 funding request Fabrication and testing of new AC coupled 3D stripixel detectors G. Pellegrini - CNM Barcelona Z. Li – BNL C. Garcia – IFIC R. Bates.
1 J.M. Heuser − STS Development Microstrip detector GSI-CIS Johann M. Heuser, GSI Li Long, CIS CBM Collaboration Meeting, GSI, Update on.
1/14 Characterization of P-type Silicon Detectors Irradiated with Neutrons M.Miñano 1, J.P.Balbuena 2, C. García 1, S.González 1, C.Lacasta 1, V.Lacuesta.
INFN and University of Perugia Characterization of radiation damage effects in silicon detectors at High Fluence HL-LHC D. Passeri (1,2), F. Moscatelli.
9 th “Trento” Workshop on Advanced Silicon Radiation Detectors Genova, February 26-28, 2014 Centro Nacional de MicroelectrónicaInstituto de Microelectrónica.
TCT measurements with SCP slim edge strip detectors Igor Mandić 1, Vladimir Cindro 1, Andrej Gorišek 1, Gregor Kramberger 1, Marko Milovanović 1, Marko.
Ljubljiana, 29/02/2012 G.-F. Dalla Betta Surface effects in double-sided silicon 3D sensors fabricated at FBK at FBK Gian-Franco Dalla Betta a, M. Povoli.
Evaluation of novel n + -in-p pixel and strip sensors for very high radiation environment Y. Unno a, S. Mitsui a, R. Hori a, R. Nagai g, O. Jinnouchi g,
Lehman Review April 2000 D. Bortoletto 1 Forward Pixel Sensors Daniela Bortoletto Purdue University US CMS DOE/NSF Review April 12,2000 Progress.
The Sixth International "Hiroshima" Symposium Giulio Pellegrini Technology of p-type microstrip detectors with radiation hard p-spray, p-stop and moderate.
Giulio Pellegrini 27th RD50 Workshop (CERN) 2-4 December 2015 Centro Nacional de MicroelectrónicaInstituto de Microelectrónica de Barcelona 1 Status of.
Studies on n and p-type MCz and FZ structures of the SMART Collaboration irradiated at fluences from 1.0 E+14 to 5.6E+15 p cm -2 RD50 Trento Workshop ITC-IRST.
FBK 3D CMS pixel sensors preliminary lab measurements E. Alagoz 1, A. Krzywda 1, D. Bortoletto 1, I. Shipsey 1, G. Bolla 1, and G. F. Dalla Betta 2, M.
6th Trento Workshop on Advanced Silicon Radiation Detectors1/16 J.P. BalbuenaInstituto de Microelectrónica de Barcelona IMB-CNM (CSIC) J.P. Balbuena, G.
Simulation of new P-Type strip detectors 17th RD50 Workshop, CERN, Geneva 1/15 Centro Nacional de MicroelectrónicaInstituto de Microelectrónica de Barcelona.
Claudio Piemonte Firenze, oct RESMDD 04 Simulation, design, and manufacturing tests of single-type column 3D silicon detectors Claudio Piemonte.
P. Fernández-Martínez – Optimized LGAD PeripheryRESMDD14, Firenze 8-10 October Centro Nacional de MicroelectrónicaInstituto de Microelectrónica de.
Sabina Ronchin 1, Maurizio Boscardin 1, Nicola Zorzi 1, Gabriele Giacomini 1, Gian-Franco Dalla-Betta 2, Marco Povoli 3, Alberto Quaranta 2 ; Giorgio Ciaghi.
Latest news on 3D detectors IRST CNM IceMos. CNM 2 wafers fabricated Double side processing with holes not all the way through, (aka Irst) n-type bulk.
Trench detectors for enhanced charge multiplication G. Casse, D. Forshaw, M. Lozano, G. Pellegrini G. Casse, 7th Trento Meeting - 29/02 Ljubljana1.
Giulio Pellegrini Actividades 3D G. Pellegrini, C. Fleta, D. Quirion, JP Balbuena, D. Bassignana.
Development of SOI pixel sensor 28 Sep., 2006 Hirokazu Ishino (Tokyo Institute of Technology) for SOIPIX group.
Journée simulations du réseau semiconducteurs TCAD simulations of edgeless pixel sensors aimed at HL-LHC Marco Bomben – LPNHE, Paris.
Low Mass, Radiation Hard Vertex Detectors R. Lipton, Fermilab Future experiments will require pixelated vertex detectors with radiation hardness superior.
Giulio Pellegrini 12th RD50 - Workshop on Radiation hard semiconductor devices for very high luminosity colliders, Ljubljana, Slovenia, 2-4 June 2008 Report.
Manchester, 24/02/2010 G.-F. Dalla Betta The common floor-plan of the ATLAS IBL 3D sensor prototypes Gian-Franco Dalla Betta (Univ. Trento and INFN) for.
10-12 April 2013, INFN-LNF, Frascati, Italy
Characterization and modelling of signal dynamics in 3D-DDTC detectors
First production of Ultra-Fast Silicon Detectors at FBK
Irradiation and annealing study of 3D p-type strip detectors
Highlights of Atlas Upgrade Week, March 2011
SuperB SVT Silicon Sensor Requirements
Thin Planar Sensors for Future High-Luminosity-LHC Upgrades
EENP2 Silicon Detectors.
Report from CNM activities
Production of 3D silicon pixel sensors at FBK for the ATLAS IBL
3D sensors: status and plans for the ACTIVE project
Fabrication of 3D detectors with columnar electrodes of the same doping type Sabina Ronchina, Maurizio Boscardina, Claudio Piemontea, Alberto Pozzaa, Nicola.
Presentation transcript:

Development of n-in-p planar pixel sensors with active edge for the ATLAS High-Luminosity Upgrade L. Bosisio* Università degli Studi di Trieste & INFN – Trieste, Italy *visiting Université Pierre et Marie Curie 7th “Trento” Workshop on Advanced Silicon Radiation Detectors (3D and p-type Technologies) Ljubljana, March 1 st 2012 M.Bomben, G. Calderini, J. Chauveau, G. Marchiori LPNHE, Paris, France A. Bagolini, M. Boscardin, G. Giacomini, N. Zorzi Fondazione Bruno Kessler, Trento, Italy A. La Rosa DPNC, Université de Genève (CH) 1

FBK ( Trento) Design Process Laboratoire de Physique Nucléaire et des Hautes Energies (LPNHE)-Paris Project leader Simulations Test 2

Outline What is this sensor for? Trench FBK Layout Simulations Test Plans 3

Dead edge ATLAS Pixel Sensor R&D for ATLAS upgrade a) Rad-hard for ~ 1e16 n eq /cm 2 (high luminosity LHC) b) Highly segmented to cope with high-event rate  pixel sensor c) Minimize dead area (no z-overlap)  Active Edge d) Low material budget  Thin substrates (200  m) e) Signal mainly due to electrons  n-on-p technology (n-on-n is double-side, not compatible with Active Edge)  Active edge pixel sensor can be a choice 4

Active Edge Sensor Structure 5 oxide Support wafer Field plate p-substrate Substrate contact Trench p-spray p-stop n-pixel

n-on-p needs pixel insulation We will use both p-spray and p-stop. Process splittings concern the dose of such implants: e.g. Splitting #p-spray dose (cm -2 ) p-stop dose (cm -2 ) 103e12 21e125e12 33e12 42e125e12 FBK has experience on planar n-on-p the edgeless technology is different due to the presence of high temperature steps required for trench doping 6

InterPixel Capacitance vs p-spray dose 7 1.Pixel capacitance should be minimized. 2.We want Field Plate (FP) for higher BD Voltage p-spray must deplete under the FP or there’ll be a large interpixel capacitance  Low p-spray dose Field Plate, High dose p-spray No FP, High dose p-spray FP, Low dose p-spray Interpixel Capacitance fF/  m Substrate Voltage (V)

10  m wide 220  m deep polysilicon filled A.Bagolini, “Development of planar active-edge technology at FBK”, 6 th Trento workshop 2011 poly Clean Si surface Trench FBK (1) 8

Povoli et al., “Development of planar detectors with active edge” NIM A658 (2011) p. 103 Trench FBK (2) Planar strip sensor (p-on-n) 9

Space for Hg probe Wafer Layout 9 FE-I4 0, 1, 2, 3, 5, 10 GRs Different n +  trench distances 4 FE-I3 1 or 2 GRs 2/4 are PT biased DC Strip Sensors 0, 1, 2 GRs Different n +  trench distances OmegaPix 1 or 2 GRs 2/4 are PT biased TestPixels/Pad 0, 1, 2, 3, 5, 10 GRs Different n +  trench distances 10 FE-I4 FE-I3 OmegaPix Planar Test Strip Test Pad Pro SIMS n+, p+, p-spray, p-stop

11 Planar Test Structures 2 MOS (one over p-spray and one over p-spray + p-stop) Gated diode 1-D Diode Van der Pauw and contact resistance of every implant Capacitors

Test Pixel Sensors 12 trench Short-circuited FE-I4 pixel Bias Tab: back-side in not accessible until support wafer is removed  ohmic (p) contact from front-side IV Measurement: Break-down Voltage vs n +  trench distance Layout splittings 0, 1, 2, 3, 5, 10 GRs Different n +  trench distances Full-size FE-I4 sensors should behave exactly as these baby sensors Scribeline: useful if support wafer is not removed its position does not affect the electrical characteristics

DC-strip sensor 13  3-mm long strips  Same design as pixels, only length is changed  In a group, 3 design variants (36 strips each) (0 GR, 1 GR, 2 GRs) wire-bondable to a 128 ch ASIC  Many groups, differing by strip  trench distance (50, 75, 100, 150  m) scribeline Designed for measuring efficiency and signal collection in the edge region vs. design parameters (distance to trench, # of GRs) Bias tab trench 0 GR1 GR2 GRs 50  m

FE-I3 and Omega-Pix n+  trench distance = 100  m ~ 1.7 mm PT biasedROC biased 1 GROK 2 GRsOK PT-biased Biased only by ROC trench Bias Tab 100  m  m

Sensors with FE-I4 Layout FE-I4 ROC is the newest of ATLAS and is available. We can profit from the large experience on 3D and n-on-n read-out by FE-I4. 1 X 0 GR (100  m) 1 X 1 GR (100  m) 1 X 2 GR (100  m) 2 X 3 GR (200  m) 2 X 3 GR (bis) (200  m) 1 X 5 GR (300  m) 1 X 10 GR (400  m) 15 trench Bias tab 100  m 250  m 50  m

FE-I4 sensors: temporary metal An additional metal contacts the pixel in the regions of passivation openings. Automatic measurements on pixel sensors are possible. Temporary metal is removed after measurements. Temporary metal stripes (over the passivation), connecting all pixels in one row  m trench

Simulations 17 Mainly dedicated to BreakDown Voltage (BDV) analysis. Varied parameters are: # of GRs distance n+  trench Design covers many layout options  BDV can be measured on test diodes and compared with simulations After validation with measured data, simulations can be used to improve the design, Simulations/measurements done before & after irradiation

Simulation Example (n+  trench distance = 100 μm) 18 BEFORE IRRADIATION V depletion O GR 1 GR 2 GRs BDV >> V depl, also for short n+  trench distance

Outlook 1) ready to start the fabrication:  4-inch p-type 200-  m thick wafers have been bond-annealed at SINTEF  Final layout done! masks ready  ~ 4 months for processing 2) Electrical characterization  pixel sensors, at wafer level, making use of temporary metal (automatic measurements)  test structures ( diode, strip,..) before and after irradiations (manual measurements) 3) Late 2012: bump bonding 4) 2013: beam tests 19

Back-up 20

Status 20 p-type 4” 200-  m thick wafers have been bond- annealed at SINTEF Microscope inspection and IR images show no particular problems 21 4”

Read-out chip FE-I4 sensor