Mitglied der Helmholtz-Gemeinschaft on the LEAP conference Polarized Hydrogen/Deuterium Molecules A new Option for Polarized Targets? by Ralf Engels JCHP.

Slides:



Advertisements
Similar presentations
The Hadron Physics Program at COSY-ANKE: selected results
Advertisements

Mitglied der Helmholtz-Gemeinschaft PAX Status and future plan June 26, 2012 | Alexander Nass.
Mitglied der Helmholtz-Gemeinschaft TSU HEPI Double-polarised np-scattering experiments at ANKE David Mchedlishvili for the ANKE collaboration HEPI, Tbilisi.
A proposal for a polarized 3 He ++ ion source with the EBIS ionizer for RHIC. A.Zelenski, J,Alessi, E.Beebe, A.Pikin BNL M.Farkhondeh, W.Franklin, A. Kocoloski,
1 First Measurement of the Structure Function b 1 on Tensor Polarized Deuteron Target at HERMES A.Nagaitsev Joint Institute for Nuclear Research, Dubna.
Energy Consumption Fossil Fuel Contribution to Global Energy Demand Year.
Spin Filtering Studies at COSY and AD Alexander Nass for the collaboration University of Erlangen-Nürnberg SPIN 2008, Charlottesville,VA,USA, October 8,
Studies on Beam Formation in an Atomic Beam Source
Patricia Aguar Bartolomé Institut für Kernphysik, Universität Mainz PSTP 2013 Workshop, Charlottesville 11th September 2013.
Mitglied der Helmholtz-Gemeinschaft on the LEAP conference Polarized Fusion by Ralf Engels JCHP / Institut für Kernphysik, FZ Jülich Nuclear.
Microscopic time-dependent analysis of neutrons transfers at low-energy nuclear reactions with spherical and deformed nuclei V.V. Samarin.
Mitglied der Helmholtz-Gemeinschaft on the LEAP conference Polarized Fusion by Ralf Engels JCHP / Institut für Kernphysik, FZ Jülich Nuclear.
Frictional Cooling Studies at Columbia University &Nevis Labs Raphael Galea Allen Caldwell Stefan Schlenstedt (DESY/Zeuthen) Halina Abramowitz (Tel Aviv.
Frictional Cooling MC Collaboration Meeting June 11-12/2003 Raphael Galea.
Electron Spin as a Probe for Structure Spin angular momentum interacts with external magnetic fields g e  e HS e and nuclear spins I m Hyperfine Interaction.
European Joint PhD Programme, Lisboa, Diagnostics of Fusion Plasmas Spectroscopy Ralph Dux.
Mitglied der Helmholtz-Gemeinschaft DSMC simulations of polarized atomic beam sources including magnetic fields September 13, 2013 | Martin Gaisser, Alexander.
Spin physics at Storage Rings
October 3, 2006E. Steffens – Spin The HERMES Polarized H&D Gas Target: 10 Years of Operation Erhard Steffens University of Erlangen-Nürnberg and.
Mitglied der Helmholtz-Gemeinschaft on the LEAP conference Polarized Deuterium/Hydrogen Molecules Possible Fuel for Nuclear Fusion Reactors? by Ralf Engels.
Polarization Facilities at COSY September 11, 2007 D.Eversheim, PSTP How Everything Began The CBS for COSY Overcoming Depolarizing Resonances The.
Feasibility Check / How to test EquipmentsStatusCostDateCommentsContact Polarized 3 He atomsCell for transfer design / LKB, Paris/MainzSspm.e. optical.
Fragmentation mechanisms for Methane induced by electron impact
Measuring DR cross sections Absolute recombination rate coefficients of tungsten ions from storage-ring experiments Stefan.
Lecture on Targets A. Introduction scattering exp., gas target, storage ring B. Basics on Vacuum, Gas Flow etc pumps, molecular flow & tubes, T-shaped.
Laser-microwave double resonance method in superfluid helium for the measurement of nuclear moments Takeshi Furukawa Department of Physics, Graduate School.
Nuclear dynamics in the dissociative recombination of H 3 + and its isotopologues Daniel Zajfman Max-Planck-Institut für Kernphysik and Weizmann Institute.
Mitglied der Helmholtz-Gemeinschaft Petersburg Nuclear Physics Institute, Russia Storage cells for internal experiments with Atomic Beam Source at the.
Mitglied der Helmholtz-Gemeinschaft on the LEAP conference Polarized Fusion by Ralf Engels JCHP / Institut für Kernphysik, FZ Jülich
Motivation Polarized 3 He gas target Solenoid design and test 3 He feasibility test Summary and outlook Johannes Gutenberg-Universit ä t Mainz Institut.
Mitglied der Helmholtz-Gemeinschaft Polarized Fusion by Giuseppe Ciullo INFN and University of Ferrara for Ralf Engels JCHP / Institut für Kernphysik,
1 Measurement of tensor analyzing powers in deuteron photodisintegration Dmitri Toporkov Budker Institute of Nuclear Physics Novosibirsk, Russia SPIN2004,
Mitglied der Helmholtz-Gemeinschaft July 2015 | Hans Ströher (Forschungszentrum Jülich) EPS Conference on High Energy Physics, July 2015, Vienna.
Mitglied der Helmholtz-Gemeinschaft TSU TBILISI STATE UNIVERSITY The pn-system Study at Internal ANKE Experiment HEPI, Tbilisi State University IKP, Forschungszentrum.
Applications of polarized neutrons V.R. Skoy Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research Dubna, Moscow Region, Russia.
Single-spin asymmetries in two hadron production of polarized deep inelastic scattering at HERMES Tomohiro Kobayashi Tokyo Institute of Technology for.
The REXTRAP Penning Trap Pierre Delahaye, CERN/ISOLDE Friedhelm Ames, Pierre Delahaye, Fredrik Wenander and the REXISOLDE collaboration TAS workshop, LPC.
Deuteron Polarimetry at COSY September 13, 2007 D.Eversheim, PSTP Some Introductory Remarks Some Experimental Details Concerning EDDA Deuteron Polarimetry.
Proton Polarimetry at the U-70 Facility Sandibek Nurushev Institute for High Energy Physics, Protvino, Russia International Seminar on High Energy Spin.
The tensor analysing power component T 21 of the exclusive π - - meson photoproduction on deuteron in the resonance region. V.N.Stibunov 1, L.M. Barkov.
Lecture 3 16/9/2003 Recall Penning Trap orbits cylindrical coordinates: ( , ,z); B = constant along z radial (  ) and axial (z) electric.
Indiana University Cyclotron Facility March, 2004 EIC WorkshopV.P.Derenchuk 1 Polarized Ion Sources V.Derenchuk, Ya.Derbenev, V.Dudnikov Second Electron-Ion.
Possibility to increase intensity of polarized hydrogen target Dmitriy Toporkov Budker Institute of Nuclear Physics Novosibirsk, Russia Spin Physics Workshop.
Status of the Source of Polarized Ions project for the JINR accelerator complex (June 2013) V.V. Fimushkin, A.D. Kovalenko, L.V. Kutuzova, Yu.V. Prokofichev.
Mitglied der Helmholtz-Gemeinschaft Physics at COSY-Jülich December 2010 | Hans Ströher (Forschungszentrum Jülich, Univ. Cologne) Baryons´10, Osaka (Japan),
Laser-Driven H/D Target at MIT-Bates Ben Clasie Massachusetts Institute of Technology Ben Clasie, Chris Crawford, Dipangkar Dutta, Haiyan Gao, Jason Seely.
TENSOR POLARIZED DEUTERON BEAM AT THE NUCLOTRON Yu.K.Pilipenko, V.P.Ershov, V.V.Fimushkin, A.Yu.Isupov, L.V.Kutuzova, V.P.Ladigin, N.M.Piskunov, V.P.Vadeev,
Extra Physics with an Atomic Beam Source and a Lamb-Shift Polarimeter
First Experiments with the Polarized Internal Gas Target (PIT) at ANKE/COSY Ralf Engels for the ANKE-Collaboration Institut für Kernphysik, Forschungszentrum.
1 Possibility to obtain a polarized hydrogen molecular target Dmitriy Toporkov Budker Institute of Nuclear Physics Novosibirsk, Russia XIV International.
P.F.Dalpiaz16 june Polarized Antiproton at FAIR The PAX experiment P.F.Dalpiaz P.F.DalpiazFerrara 2 workshop on the QCD structure of the nucleon.
Towards Polarized Antiprotons Frank Rathmann Institut für Kernphysik Forschungszentrum Jülich Workshop on „Observables in Antiproton-Proton Interactions“
The Polarized Internal Target at ANKE: First Results Kirill Grigoryev Institut für Kernphysik, Forschungszentrum Jülich PhD student from Petersburg Nuclear.
HERMES results on azimuthal modulations in the spin-independent SIDIS cross section Francesca Giordano DESY, Hamburg For the collaboration Madrid, DIS.
NSTAR2011, Jefferson Lab, USA May 17-20, 2011 Mitglied der Helmholtz-Gemeinschaft Tamer Tolba for the WASA-at-COSY collaboration Institut für Kernphysik.
Source of Polarized Ions for the JINR accelerator complex (September 2015) V.V. Fimushkin, A.D. Kovalenko, L.V. Kutuzova, Yu.V. Prokofichev, V.B. Shutov.
The Lineage of Nuclear Polarization Instrumentation Often Leads Through Madison Thomas B. Clegg University of North Carolina at Chapel Hill and Triangle.
Polarized source upgrade RSC, January 11, OPPIS LINAC Booster AGS RHIC ( ) ∙10 11 p/bunch 0.6mA x 300us→11∙10 11 polarized H - /pulse. ( )
The Polarized Internal Gas Target of ANKE at COSY
The HITRAP Project at GSI For the HITRAP collaboration: Frank Herfurth GSI Darmstadt.
Thomas Roser Snowmass 2001 June 30 - July 21, 2001 Proton Polarimetry Proton polarimeter reactions RHIC polarimeters.
Institute for Nuclear Physics Ralf Gebel – PSTP 2007 – September 2007 Facility overview Ion sources at COSY R&D details.
TRIGA-SPEC: Developement platform for MATS and LaSpec at FAIR Double-beta transition Q-value measurements with TRIGA-TRAP NUSTAR Meeting Christian.
Mitglied der Helmholtz-Gemeinschaft Development of 3D Polarimeters for storage ring EDM searches JEDI Collaboration | David Chiladze (IKP, Forschungszentrum.
Mitglied der Helmholtz-Gemeinschaft Summary of the target session of the IEB Workshop June 19, 2015 | Alexander Nass.
10/10/2008 Mitglied der Helmholtz-Gemeinschaft First Experiments with the Polarized Internal Gas Target (PIT) at ANKE/COSY Ralf Engels for the ANKE collaboration.
Petersburg Nuclear Physics Institute
Feasibility Study of the Polarized 6Li ion Source
Advantages of Nuclear Fusion
Production and Storage of Polarized H2, D2 and HD Molecules
Presentation transcript:

Mitglied der Helmholtz-Gemeinschaft on the LEAP conference Polarized Hydrogen/Deuterium Molecules A new Option for Polarized Targets? by Ralf Engels JCHP / Institut für Kernphysik, FZ Jülich

2 internal experiments – with the circulating beam external experiments – with the extracted beam p, p, d, d with momenta up to 3.7 GeV/c

3 ANKE/COSY Main parts of a PIT: Atomic Beam Source Target gas hydrogen or deuterium H beam intensity (2 hyperfine states) atoms / s Beam size at the interaction point σ = 2.85 ± 0.42 mm Polarization for hydrogen atoms P Z = 0.89 ± 0.01 (HFS 1) P Z = ± 0.01 (HFS 3) Lamb-Shift Polarimeter Storage Cell M. Mikirtychyants et al.; NIM A 721 (0) 83 (2013)

4 ABS and Lamb-shift polarimeter 6-pole magnet 6-pole magnet rf-transition

5 Polarized H 2 Molecules Is there a way to increase P m P (surface material, T, B etc)? P m = 0.5 P a Eley-Rideal Mechanism

6 Polarized H 2 Molecules o-H 2 ↔ p-H 2 : ΔE = kJ/mol J = 1, 3, 5 J = 0, 2, 4 T = 0 K:0:4 T= 300 K:3:1

7 Polarized H 2 Molecules -

8 Measurements from NIKHEF, IUCF, HERMES show that recombined molecules retain a fraction of initial nuclear polarization of atoms! Polarized H 2 Molecules The HERMES Collaboration; Eur. Phys. J. D 29, 21–26 (2004) DOI: /epjd/e

9 Theory A.Abragam: The Principles of Nuclear Magnetism Hamiltonian to describe the nuclear relaxation of a H 2 molecules H = ω I ( I 1 z + I 2 z ) + ω J J z + ω‘ (I 1 + I 2 )·J + ω‘‘ { I 1 · I 2 – 3(I 1 · n)(I 2 · n)} I 1 and I 2 are the spins of the two protons I 1 + I 2 = I J is the rotational angular momentum of the molecule ω I = - γ I H 0 is the proton Lamor frequency in the applied field H 0 ω J = - γ J H 0 is the Lamor frequency of the rotational magnetic moment of the H 2 ω‘ = - γ I H‘ is the strength of the coupling between the magnetic moment of the protons and the magnetic field produced at their positions by the rotation of the molecule ( H‘ = 2.7 mT) ω‘‘ = 2 γ I H‘‘ = γ I 2 ħ/ b 3 is the strength of the dipolar coupling between the protons, b is their distance, and n is the unit vector b/b (H‘‘ = 3.4 mT). B c (H z ) ≠ B c (D z ) ≠ B c (D zz )

10 Nuclear Polarization of Hydrogen Molecules from Recombination of Polarized Atoms T.Wise et al., Phys. Rev. Lett. 87, (2001). Polarized H 2 Molecules Spin Relaxation of H 2 /D 2 Molecules A. Abragam: The Principles of Nuclear Magnetism (1961) The polarization losses during wall collision depend on: -Nuclear Spin I -Polarization P m -Temperature -Magnetic field in the cell P (B,n) = P m · e - n ( ) 2 BcBc B n ≈ 1000 Polarization losses of the molecules B c = 5.4 mT

11  Recombination of polarized atoms into molecules  Conversion of polarized atoms and molecules into ions  Separation of protons and H 2 by energy with the Wienfilter  Measurement of proton and H 2 polarization in LSP polarized cell wall B ~ 1T The idea + +

12 The Setup ISTC Project # 1861 PNPI, FZJ, Uni. Cologne DFG Project: 436 RUS 113/977/0-1

13 + H 2 + e → H + 2e + … H 2 + e → H 2 + 2e The Ionization Processes + (E e = 150 eV: σ = 0.46 · cm 2 ) (E e = 150 eV: σ = 0.88 · cm 2 ) (E e = 150 eV: σ = · cm 2 ) ( H + e → H + 2e +

14 Recombination

15 Experimental results Mass separation with the Wienfilter F el = F B E q = - q v B

16 Experimental results Wienfilter function of the protons in the LSP E kin (p) = 1 keV

17 Experimental results Wienfilter function of the H 2 ions in the LSP +

18 Experimental results How are the polarized H 2S produced from H 2 ? + 2-step process (Stripping at the Cs + H 2S production) 1-step process: Direct production: H 2 + Cs → H 2S + Cs + … + Cross section: σ(p→H 2S ) ≈ 35·σ(H 2 →H 2S ) +

19 Theory

20 Theory

21 Theory

22 See Talk by A. Nass on Friday Experimental results Protons:

Experimental results Polarization of the Protons (HFS 1, E p = 4 keV, Gold Surface, B=0.28 T)

24 Experimental results Measurements on Fused Quartz Glass in the first hours P m = 66 % of the original atomic Polarization T Cell = 100 K

25 Experimental results Measurements on Fused Quartz Glass after several days T Cell = 100 K P m = ± n = 368 ± 23 P a = 0.85 ± 0.01 n = 363 ± 29 c = ± 0.002

26 Experimental results Measurements on Fused Quartz Glass after several days T Cell = 50 K P m = ± n = 321 ± 23 P a = 0.46 ± 0.21 n = 351 ± 104 c = 0.98 ± 0.02 No real changes between 50 and 100 K

27 Experimental results Measurements on Fomblin Oil (Perfluorpolyether PFPE) HFS 3 T Cell = 100 K H 2 : P m = ± 0.02 n = 277 ± 31 Protons: P m = ± 0.02 n = 174 ± 19 c = ±

28 Experimental results J.S. Price and W. Haeberli, “Measurement of cell wall depolarization of polarized hydrogen gas targets in a weak magnetic field” Nuclear Instruments and Methods in Physics Research A 349 (1994)

29 Experimental results Measurements on Fomblin Oil (Perfluorpolyether PFPE) HFS 3: Next attempt T Cell = 100 K H 2 : P m = ± 0.02 n = 140 ± 60 Protons: P m = ± 0.02 n = 429 ± 133 c = ± P a = ±

30 Experimental results Measurements on Fomblin Oil (Perfluorpolyether PFPE) HFS 2+3: Next attempt T Cell = 100 K H 2 : P m = ± 0.02 n = 235 ± 29 Protons: P m = ± 0.02 n = 522 ± 87 c = 0.88 ± 0.02 P a = ±

31 Experimental results Measurements on Fomblin Oil (Perfluorpolyether PFPE) Measurement on the 3. day Measurement on the 4. day T=100 K (only H 2 ) +

32 Experimental results Measurements on Fomblin Oil (Perfluorpolyether PFPE) HFS 3 HFS 2+3 B cell = 0.4 T, H 2 only +

33 Experimental results Very first results on water (Fomblin): p H2H2 + Very Preliminary HFS3

34 Experimental results Very first results on water (Gold): T cell = 100 K -0,44 P m = 0.28 ±0.01 n = 399 ± 20 P m = ±0.01 n = 421 ± 33 P m = ±0.01 n = 773 ± 27

35 Experimental results Measurements on Fused Quartz Glass after several days Deuterium: HFS 3+4 (Vector and Tensorpolarized) P m,z = ±0.01 n = 875 ± 96 P m,zz = 0.24 ± 0.03 n = 1210 ± 314 (P a,z = ± 0.01 / P a,zz = ± 0.02) P m,zz = 0.24 ± 0.03 n = 2030 ± 753 c = ± P m,z = ±0.01 n = 894 ± 230 c = ± T Cell = 100 K

36 Conclusion We can measure: -the recombination of hydrogen/deuterium atoms on different surfaces and for different HFS. -the polarization of atoms and molecules in a storage cell. -the number of wall collisions of the molecules in the cell. At least, we can see the difference between „hard“ and „soft“ materials (cos-distribution or cos x -distribution). -the B c for vector- and tensor-polarized Deuterium. -We can increase the target density with recombined molecules. => B c (D z ) = 8 ±1 mT / B c (D zz ) = 11 ±1 mT

37 To-do List -Calculation of B c for vector- and tensor-polarized Deuterium - Additional cryo-catcher between ABS and ISTC-chamber -Measurements on different surfaces: - Aluminium - Teflon - … -More measurements on a water surface (Maybe the surface below has some influence …) -Development of a new openable storage cell for ANKE -Polarized Deuterium Fuel for polarized fusion reactors ( Talk on Monday)