Inferring gene regulatory networks from transcriptomic profiles Dirk Husmeier Biomathematics & Statistics Scotland.

Slides:



Advertisements
Similar presentations
Bayesian inference Lee Harrison York Neuroimaging Centre 01 / 05 / 2009.
Advertisements

DREAM4 Puzzle – inferring network structure from microarray data Qiong Cheng.
Probabilistic analog of clustering: mixture models
Le Song Joint work with Mladen Kolar and Eric Xing KELLER: Estimating Time Evolving Interactions Between Genes.
Probabilistic modelling in computational biology Dirk Husmeier Biomathematics & Statistics Scotland.
Pattern Recognition and Machine Learning
Dynamic Bayesian Networks (DBNs)
Mechanistic models and machine learning methods for TIMET Dirk Husmeier.
TNO orbit computation: analysing the observed population Jenni Virtanen Observatory, University of Helsinki Workshop on Transneptunian objects - Dynamical.
Regulatory Network (Part II) 11/05/07. Methods Linear –PCA (Raychaudhuri et al. 2000) –NIR (Gardner et al. 2003) Nonlinear –Bayesian network (Friedman.
Reverse engineering gene and protein regulatory networks using Graphical Models. A comparative evaluation study. Marco Grzegorczyk Dirk Husmeier Adriano.
6. Gene Regulatory Networks
Modeling Gene Interactions in Disease CS 686 Bioinformatics.
Gaussian Processes for Transcription Factor Protein Inference Neil D. Lawrence, Guido Sanguinetti and Magnus Rattray.
1 Harvard Medical School Transcriptional Diagnosis by Bayesian Network Hsun-Hsien Chang and Marco F. Ramoni Children’s Hospital Informatics Program Harvard-MIT.
Bayesian integration of biological prior knowledge into the reconstruction of gene regulatory networks Dirk Husmeier Adriano V. Werhli.
Dependency networks Sushmita Roy BMI/CS 576 Nov 26 th, 2013.
Statistical Bioinformatics QTL mapping Analysis of DNA sequence alignments Postgenomic data integration Systems biology.
1 Bayesian methods for parameter estimation and data assimilation with crop models Part 2: Likelihood function and prior distribution David Makowski and.
Cis-regulation Trans-regulation 5 Objective: pathway reconstruction.
Genetic network inference: from co-expression clustering to reverse engineering Patrik D’haeseleer,Shoudan Liang and Roland Somogyi.
Using Bayesian Networks to Analyze Expression Data N. Friedman, M. Linial, I. Nachman, D. Hebrew University.
Learning Structure in Bayes Nets (Typically also learn CPTs here) Given the set of random variables (features), the space of all possible networks.
Introduction to Bayesian statistics Yves Moreau. Overview The Cox-Jaynes axioms Bayes’ rule Probabilistic models Maximum likelihood Maximum a posteriori.
Reverse engineering gene regulatory networks Dirk Husmeier Adriano Werhli Marco Grzegorczyk.
Learning regulatory networks from postgenomic data and prior knowledge Dirk Husmeier 1) Biomathematics & Statistics Scotland 2) Centre for Systems Biology.
Probabilistic modelling in computational biology Dirk Husmeier Biomathematics & Statistics Scotland.
Learning With Bayesian Networks Markus Kalisch ETH Zürich.
Problem Limited number of experimental replications. Postgenomic data intrinsically noisy. Poor network reconstruction.
Metabolic Network Inference from Multiple Types of Genomic Data Yoshihiro Yamanishi Centre de Bio-informatique, Ecole des Mines de Paris.
Inferring gene regulatory networks with non-stationary dynamic Bayesian networks Dirk Husmeier Frank Dondelinger Sophie Lebre Biomathematics & Statistics.
Reconstructing gene regulatory networks with probabilistic models Marco Grzegorczyk Dirk Husmeier.
Learning Bayesian networks from postgenomic data with an improved structure MCMC sampling scheme Dirk Husmeier Marco Grzegorczyk 1) Biomathematics & Statistics.
IMPROVED RECONSTRUCTION OF IN SILICO GENE REGULATORY NETWORKS BY INTEGRATING KNOCKOUT AND PERTURBATION DATA Yip, K. Y., Alexander, R. P., Yan, K. K., &
Inferring gene regulatory networks from transcriptomic profiles Dirk Husmeier Biomathematics & Statistics Scotland.
MCMC in structure space MCMC in order space.
Dependency networks Sushmita Roy BMI/CS 576 Nov 25 th, 2014.
Lecture 2: Statistical learning primer for biologists
BAYESIAN INFERENCE OF SIGNALING NETWORK TOPOLOGY IN A CANCER CELL LINE Steven M. Hill, Yiling Lu, Jennifer Molina, Laura M. Heiser, Paul T. Spellman, Terence.
Gaussian Processes For Regression, Classification, and Prediction.
Reverse engineering of regulatory networks Dirk Husmeier & Adriano Werhli.
Nonlinear differential equation model for quantification of transcriptional regulation applied to microarray data of Saccharomyces cerevisiae Vu, T. T.,
04/21/2005 CS673 1 Being Bayesian About Network Structure A Bayesian Approach to Structure Discovery in Bayesian Networks Nir Friedman and Daphne Koller.
Review of statistical modeling and probability theory Alan Moses ML4bio.
Statistical Methods. 2 Concepts and Notations Sample unit – the basic landscape unit at which we wish to establish the presence/absence of the species.
Mechanistic models and machine learning methods for TIMET
Gaussian Process Networks Nir Friedman and Iftach Nachman UAI-2K.
Bayesian Hierarchical Clustering Paper by K. Heller and Z. Ghahramani ICML 2005 Presented by David Williams Paper Discussion Group ( )
Computational methods for inferring cellular networks II Stat 877 Apr 17 th, 2014 Sushmita Roy.
Bayesian inference Lee Harrison York Neuroimaging Centre 23 / 10 / 2009.
Bayesian Brain Probabilistic Approaches to Neural Coding 1.1 A Probability Primer Bayesian Brain Probabilistic Approaches to Neural Coding 1.1 A Probability.
SUPERVISED AND UNSUPERVISED LEARNING Presentation by Ege Saygıner CENG 784.
Institute of Statistics and Decision Sciences In Defense of a Dissertation Submitted for the Degree of Doctor of Philosophy 26 July 2005 Regression Model.
1 CISC 841 Bioinformatics (Fall 2008) Review Session.
Ch 1. Introduction Pattern Recognition and Machine Learning, C. M. Bishop, Updated by J.-H. Eom (2 nd round revision) Summarized by K.-I.
Canadian Bioinformatics Workshops
Identifying submodules of cellular regulatory networks Guido Sanguinetti Joint work with N.D. Lawrence and M. Rattray.
Inferring Regulatory Networks from Gene Expression Data BMI/CS 776 Mark Craven April 2002.
Probability Theory and Parameter Estimation I
ICS 280 Learning in Graphical Models
A Simple Approach to Ranking Differentially Expressed Gene Expression Time Courses through Gaussian Process Regression By Alfredo A Kalaitzis and Neil.
Bud Mishra Professor of Computer Science and Mathematics 12 ¦ 3 ¦ 2001
Special Topics In Scientific Computing
Recovering Temporally Rewiring Networks: A Model-based Approach
CSCI 5822 Probabilistic Models of Human and Machine Learning
Filtering and State Estimation: Basic Concepts
Evaluation of inferred networks
Network Inference Chris Holmes Oxford Centre for Gene Function, &,
Multivariate Methods Berlin Chen
Multivariate Methods Berlin Chen, 2005 References:
Presentation transcript:

Inferring gene regulatory networks from transcriptomic profiles Dirk Husmeier Biomathematics & Statistics Scotland

Overview Introduction Application to synthetic biology Lessons from DREAM

Network reconstruction from postgenomic data

Accuracy Computational complexity Methods based on correlation and mutual information Conditional independence graphs Mechanistic models Bayesian networks

Accuracy Computational complexity Methods based on correlation and mutual information Conditional independence graphs Mechanistic models Bayesian networks

direct interaction common regulator indirect interaction co-regulation Pairwise associations do not take the context of the systeminto consideration Shortcomings

Accuracy Computational complexity Methods based on correlation and mutual information Conditional independence graphs Mechanistic models Bayesian networks

Conditional Independence Graphs (CIGs) Direct interaction Partial correlation, i.e. correlation conditional on all other domain variables Corr(X 1,X 2 |X 3,…,X n ) Problem: #observations < #variables  Covariance matrix is singular strong partial correlation π 12 Inverse of the covariance matrix

Accuracy Computational complexity Methods based on correlation and mutual information Conditional independence graphs Mechanistic models Bayesian networks

Model Parameters q Probability theory  Likelihood

1) Practical problem: numerical optimization q 2) Conceptual problem: overfitting ML estimate increases on increasing the network complexity

Overfitting problem True pathway Poorer fit to the data Equal or better fit to the data

Regularization E.g.: Bayesian information criterion Maximum likelihood parameters Number of parameters Number of data points Data misfit term Regularization term

Complexity LikelihoodBIC

Model selection: find the best pathway Select the model with the highest posterior probability: This requires an integration over the whole parameter space:

Problem: huge computational costs q

Accuracy Computational complexity Methods based on correlation and mutual information Conditional independence graphs Mechanistic models Bayesian networks

Friedman et al. (2000), J. Comp. Biol. 7, Marriage between graph theory and probability theory

Bayes net ODE model

Model Parameters q Bayesian networks: integral analytically tractable!

UAI 1994

[A]= w1[P1] + w2[P2] + w3[P3] + w4[P4] + noise Linearity assumption A P1 P2 P4 P3 w1 w4 w2 w3

t1t1 t2t2 t3t3 t4t4 t5t5 t6t6 t7t7 t8t8 t9t9 t 10 X (1) X 1,1 X 1,2 X 1,3 X 1,4 X 1,5 X 1,6 X 1,7 X 1,8 X 1,9 X 1,10 X (2) X 2,1 X 2,2 X 2,3 X 2,4 X 2,5 X 2,6 X 2,7 X 2,8 X 2,9 X 2,10 X (3) X 3,1 X 3,2 X 3,3 X 3,4 X 3,5 X 3,6 X 3,7 X 3,8 X 3,9 X 3,10 X (4) X 4,1 X 4,2 X 4,3 X 4,4 X 4,5 X 4,6 X 4,7 X 4,8 X 4,9 X 4,10 Homogeneity assumption

Accuracy Computational complexity Methods based on correlation and mutual information Conditional independence graphs Mechanistic models Bayesian networks

Example: 4 genes, 10 time points t1t1 t2t2 t3t3 t4t4 t5t5 t6t6 t7t7 t8t8 t9t9 t 10 X (1) X 1,1 X 1,2 X 1,3 X 1,4 X 1,5 X 1,6 X 1,7 X 1,8 X 1,9 X 1,10 X (2) X 2,1 X 2,2 X 2,3 X 2,4 X 2,5 X 2,6 X 2,7 X 2,8 X 2,9 X 2,10 X (3) X 3,1 X 3,2 X 3,3 X 3,4 X 3,5 X 3,6 X 3,7 X 3,8 X 3,9 X 3,10 X (4) X 4,1 X 4,2 X 4,3 X 4,4 X 4,5 X 4,6 X 4,7 X 4,8 X 4,9 X 4,10

t1t1 t2t2 t3t3 t4t4 t5t5 t6t6 t7t7 t8t8 t9t9 t 10 X (1) X 1,1 X 1,2 X 1,3 X 1,4 X 1,5 X 1,6 X 1,7 X 1,8 X 1,9 X 1,10 X (2) X 2,1 X 2,2 X 2,3 X 2,4 X 2,5 X 2,6 X 2,7 X 2,8 X 2,9 X 2,10 X (3) X 3,1 X 3,2 X 3,3 X 3,4 X 3,5 X 3,6 X 3,7 X 3,8 X 3,9 X 3,10 X (4) X 4,1 X 4,2 X 4,3 X 4,4 X 4,5 X 4,6 X 4,7 X 4,8 X 4,9 X 4,10 Standard dynamic Bayesian network: homogeneous model

Limitations of the homogeneity assumption

Our new model: heterogeneous dynamic Bayesian network. Here: 2 components t1t1 t2t2 t3t3 t4t4 t5t5 t6t6 t7t7 t8t8 t9t9 t 10 X (1) X 1,1 X 1,2 X 1,3 X 1,4 X 1,5 X 1,6 X 1,7 X 1,8 X 1,9 X 1,10 X (2) X 2,1 X 2,2 X 2,3 X 2,4 X 2,5 X 2,6 X 2,7 X 2,8 X 2,9 X 2,10 X (3) X 3,1 X 3,2 X 3,3 X 3,4 X 3,5 X 3,6 X 3,7 X 3,8 X 3,9 X 3,10 X (4) X 4,1 X 4,2 X 4,3 X 4,4 X 4,5 X 4,6 X 4,7 X 4,8 X 4,9 X 4,10

t1t1 t2t2 t3t3 t4t4 t5t5 t6t6 t7t7 t8t8 t9t9 t 10 X (1) X 1,1 X 1,2 X 1,3 X 1,4 X 1,5 X 1,6 X 1,7 X 1,8 X 1,9 X 1,10 X (2) X 2,1 X 2,2 X 2,3 X 2,4 X 2,5 X 2,6 X 2,7 X 2,8 X 2,9 X 2,10 X (3) X 3,1 X 3,2 X 3,3 X 3,4 X 3,5 X 3,6 X 3,7 X 3,8 X 3,9 X 3,10 X (4) X 4,1 X 4,2 X 4,3 X 4,4 X 4,5 X 4,6 X 4,7 X 4,8 X 4,9 X 4,10 Our new model: heterogeneous dynamic Bayesian network. Here: 3 components

Learning with MCMC q k h Number of components (here: 3) Allocation vector

Learning with MCMC q k h Number of components (here: 3) Allocation vector

Non-homogeneous model  Non-linear model

[A]= w1[P1] + w2[P2] + w3[P3] + w4[P4] + noise BGe: Linear model A P1 P2 P4 P3 w1 w4 w2 w3

Can we get an approximate nonlinear model without data discretization? y x

Idea: piecewise linear model y x

t1t1 t2t2 t3t3 t4t4 t5t5 t6t6 t7t7 t8t8 t9t9 t 10 X (1) X 1,1 X 1,2 X 1,3 X 1,4 X 1,5 X 1,6 X 1,7 X 1,8 X 1,9 X 1,10 X (2) X 2,1 X 2,2 X 2,3 X 2,4 X 2,5 X 2,6 X 2,7 X 2,8 X 2,9 X 2,10 X (3) X 3,1 X 3,2 X 3,3 X 3,4 X 3,5 X 3,6 X 3,7 X 3,8 X 3,9 X 3,10 X (4) X 4,1 X 4,2 X 4,3 X 4,4 X 4,5 X 4,6 X 4,7 X 4,8 X 4,9 X 4,10 Inhomogeneous dynamic Bayesian network with common changepoints

Inhomogenous dynamic Bayesian network with node-specific changepoints t1t1 t2t2 t3t3 t4t4 t5t5 t6t6 t7t7 t8t8 t9t9 t 10 X (1) X 1,1 X 1,2 X 1,3 X 1,4 X 1,5 X 1,6 X 1,7 X 1,8 X 1,9 X 1,10 X (2) X 2,1 X 2,2 X 2,3 X 2,4 X 2,5 X 2,6 X 2,7 X 2,8 X 2,9 X 2,10 X (3) X 3,1 X 3,2 X 3,3 X 3,4 X 3,5 X 3,6 X 3,7 X 3,8 X 3,9 X 3,10 X (4) X 4,1 X 4,2 X 4,3 X 4,4 X 4,5 X 4,6 X 4,7 X 4,8 X 4,9 X 4,10

NIPS 2009

Non-stationarity in the regulatory process

Non-stationarity in the network structure

Flexible network structure.

Flexible network structure with regularization

ICML 2010

Morphogenesis in Drosophila melanogaster Gene expression measurements over 66 time steps of 4028 genes (Arbeitman et al., Science, 2002). Selection of 11 genes involved in muscle development. Zhao et al. (2006), Bioinformatics 22

Transition probabilities: flexible structure with regularization Morphogenetic transitions: Embryo  larva larva  pupa pupa  adult

Overview Introduction Application to synthetic biology Lessons from DREAM

Can we learn the switch Galactose  Glucose? Can we learn the network structure?

NIPS 2010

Node 1 Node i Node p Hierarchical Bayesian model

Node 1 Node i Node p Hierarchical Bayesian model

Exponential versus binomial prior distribution Exploration of various information sharing options

Task 1: Changepoint detection Switch of the carbon source: Galactose  Glucose

Task 2: Network reconstruction Precision Proportion of identified interactions that are correct Recall Proportion of true interactions that we successfully recovered

BANJO: Conventional homogeneous DBN TSNI: Method based on differential equations Inference: optimization, “best” network

Sample of high-scoring networks

Feature extraction, e.g. marginal posterior probabilities of the edges

Galactose

Glucose

PriorCouplingAverage AUC None 0.70 ExponentialHard0.77 BinomialHard0.75 BinomialSoft0.75 Average performance over both phases: Galactose and glucose

How are we getting from here …

… to there ?!

Overview Introduction Application to synthetic biology Lessons from DREAM

DREAM: Dialogue for Reverse Engineering Assessments and Methods International network reconstruction competition: June-Sept 2010 Network# Transcription Factors # Genes# Chips Network 1 (in silico) Network Network Network

Marco Grzegorczyk University of Dortmund Germany Frank Dondelinger BioSS / University of Edinburgh United Kingdom Sophie Lèbre Université de Strasbourg France Our team Andrej Aderhold BioSS / University of St Andrews United Kingdom

Our model: Developed for time series Data: Different experimental conditions, perturbations (e.g. ligand injection), interventions (e.g. gene knock-out, overexpression), time points How do we get an ordering of the genes?

PCA

SOM

No time series  Use 1-dim SOM to get a chip order

Ordering of chips  changepoint model

Problems with MCMC convergence Network# Transcription Factors # Genes# Chips Network 1 (in silico) Network Network Network

Problems with MCMC convergence Network# Transcription Factors # Genes# Chips Network 1 (in silico) Network Network Network PNAS 2009

[A]= w1[P1] + w2[P2] + w3[P3] + w4[P4] + noise Linear model A P1 P2 P4 P3 w1 w4 w2 w3

L1 regularized linear regression

Problems with MCMC convergence Network# Transcription Factors # Genes# Chips Network 1 (in silico) Network Network Network

Problems with MCMC convergence Network# Transcription Factors # Genes# Chips Network 1 (in silico) Network Network Network

Assessment Participants Had to submit rankings of all interactions Organisers Computed areas under 1)Precision-recall curves 2)ROC curves (plotting sensitivity=recall against specificity)

Uncertainty about the best network structure Limited number of experimental replications, high noise

Sample of high-scoring networks

Feature extraction, e.g. marginal posterior probabilities of the edges

Sample of high-scoring networks Feature extraction, e.g. marginal posterior probabilities of the edges High-confident edge High-confident non-edge Uncertainty about edges

ROC curves True positive rate Sensitivity False positive rate Complementary specificity

Definition of metrics Total number of true edges Total number of predicted edges Total number of non-edges Total number of true edges

The relation between Precision-Recall (PR) and ROC curves

Better performance

Assessment Participants Had to submit rankings of all interactions Organisers Computed areas under 1)Precision-recall curves 2)ROC curves (plotting sensitivity=recall against specificity)

Proportion of recovered true edges Proportion of avoided non-edges AUROC = 0.5

Joint work with Wolfgang Lehrach on ab initio prediction of protein interactions AUROC= 0.61,0.67,0.67

ICML 2006

The relation between Precision-Recall (PR) and ROC curves Better performance

Potential advantage of Precision-Recall (PR) over ROC curves Large number of negative examples (TN+FP) Large change in FP may have a small effect on the false positive rate Large change in FP has a strong effect on the precision Small difference Large difference

Room for improvement: Higher-dimensional changepoint process Perturbations Experimental conditions