1 1 מ חויבות ל מ צוינות - ג רעין להצלחה BNCT and other studies at Soreq EuCARD2 kickoff meeting Ido Silverman for SARAF team 14/6/2013.

Slides:



Advertisements
Similar presentations
Lesson 16 Nuclear Medicine. What is Nuclear Medicine? Diagnosis and Treatment of Disease using small amounts of radio-nuclides (radiopharmaceuticals)
Advertisements

SUPERCONDUCTING RF (SRF) SYSTEMS Peter McIntosh (STFC) Accelerator-driven Production of Medical Isotopes 8 th – 9 th December
 Background  Imaging techniques  Reactor production  Accelerator production  The Moly Crisis  Radioisotopes.
1 SARAF SAR AF SARAF – S oreq A pplied R esearch A ccelerator F acility NUPECC Meeting 08 June, 2013, Florence, Italy Soreq Israel Mardor Soreq NRC, Yavne,
Assessment of beam-target interaction of IFMIF A state of the art J. Knaster a, D. Bernardi b, A. García c, F. Groeschel h, R. Heidinger d, M. Ida e, A.
Neutral Particles. Neutrons Neutrons are like neutral protons. –Mass is 1% larger –Interacts strongly Neutral charge complicates detection Neutron lifetime.
12C(p,g)13N g III. Nuclear Reaction Rates 12C 13N Nuclear reactions
Interactions of charged particles with the patient I.The depth-dose distribution - How the Bragg Peak comes about - (Thomas Bortfeld) II.The lateral dose.
Study of the fragmentation of Carbon ions for medical applications Protons (hadrons in general) especially suitable for deep-sited tumors (brain, neck.
Oct.18, Neutron Field and Induced Radioactivity in IFMIF Environment M. Sugimoto(JAERI) IEA International Work Shop on Fusion Neutronics The Kongreshous.
Design on Target and Moderator of X- band Compact Electron Linac Neutron Source for Short Pulsed Neutrons Kazuhiro Tagi.
Radiation therapy is based on the exposure of malign tumor cells to significant but well localized doses of radiation to destroy the tumor cells. The.
FETS-HIPSTER (Front End Test Stand – High Intensity Proton Source for Testing Effects of Radiation) Proposal for a new high-intensity proton irradiation.
Introduction to Nuclear Medicine
9. DIAGNOSTIC NUCLEAR MEDICINE
Current status of the liquid lithium target development LiLiT Team presented by S. Halfon 4 th High-Power Targetry Workshop May 3,
ELBE Neutron Source IAEA TC Meeting “Nuclear Data for IFMIF”, FZ Karlsruhe, October 4-6, 2005 Klaus Seidel Technische Universität Dresden.
The Nucleus and Radioactivity
Nuclear Chemistry A BRIEF Overview. Just the Basics Nuclear chemistry is not a huge focus, but you should be aware of the basics Nuclear chemistry is.
Installation and Commissioning of the Soreq Applied Research Accelerator Facility A. Nagler 1, D. Berkovits 1, Y. Buzaglo 1, I. Gertz 1, A. Grin 1, I.
Seminar Presentation On + NUCLEAR BATTERIES - A Portable Energy Source
J. Rodnizki SARAF, Soreq NRC HB2008, August, 2008 Nashville TN Lattice Beam dynamics study and loss estimation for SARAF/ EURISOL driver 40/60 MeV 4mA.
Soreq Low energy particle accelerators activities in Israel Dan Berkovits April 10 th 2014 RECFA TAU 1 Soreq.
Response of the sensors to different doses from tests in Israel Radiotherapy is used as a treatment in around 50% of cancer cases in the UK. Predominantly,
Facilities at the Nuclear Physics Institute Academy of Sciences of the Czech Rep., Řež.
Design of FFAG-ERIT 05/12/07 Kota Okabe (KEK) for FFAG-DDS group.
If the Coordinates system is. R r b (impact parameter.
Physical Science. Sec 1: What is radioactivity? So what are the names of these particles? Positive particles? protons neutrons No charge, NEUtral.
J-PARC Accelerators Masahito Tomizawa KEK Acc. Lab. Outline, Status, Schedule of J-PARC accelerator MR Beam Power Upgrade.
Chapter 4. Power From Fission 1.Introduction 2.Characteristics of Fission 3. General Features 4. Commercial Reactors 5. Nuclear Reactor Safety 6. Nuclear.
Alpha and Beta Interactions
JAERI nuclear analyses for IFMIF T. Umetsu, M. Yamauchi and M. Sugimoto Presented by Takeo NISHITANI Japan Atomic Energy Agency (JAEA) IAEA Technical Meeting.
Fundamental Interactions Physics & Instrumentation Conclusions Conveners: P. Mueller, J. Clark G. Savard, N. Scielzo.
Radioactive ion beam production at other facilities
Experimental part: Measurement the energy deposition profile for U ions with energies E=100 MeV/u - 1 GeV/u in iron and copper. Measurement the residual.
I. Introductory remarks and present status II. Laboratory experiments and astrophysics III. Future options scenarios status and challenges new developments.
POSSIBILITIES OF PRODUCTION OF TECHNETIUM SHORT-LIVED RADIOACTIVE ISOTOPES O.D. Maslov, S.N. Dmitriev, A.V. Sabelnikov Flerov Laboratory of Nuclear Reactions.
The 40 MeV proton / deuteron linac at SARAF August 27 th, 2008 Jacob Rodnizki on behalf of SARAF team.
Production of innovative radionuclides at ARRONAX and 211 At RIT F. Haddad GIP ARRONAX.
1 Chapter 9 Nuclear Radiation 9.1 Natural Radioactivity Copyright © 2009 by Pearson Education, Inc.
Alexander Aleksandrov Oak Ridge National Laboratory
Lecture 10  Relationship Between Wavelength, Frequency, Energy, and Velocity of Light  Production of Positron Emitters  Image of the Week.
Beam test possibilities at JINR and Fermilab V. Pronskikh Fermilab 02/15/2012.
F. Negoita, Bucuresti, 28 Feb Participation of NIPNE-Bucharest in SPIRAL2 Project.
Medical Physics at a Proton Source Proton Therapy Fast Neutron Therapy Isotope Production Basic Research AJLennox 10/08/04.
PRODUCTION OF RADIONUCLIDE PRODUCTION OF RADIONUCLIDE 2/27/2016 L5,L6 and L7 1 PRINCE SATTAM BIN ABDUL AZIZ UNIVERSITY COLLEGE OF PHARMACY Nuclear Pharmacy.
Energy recovery linacs for commercial radioisotope production A. Sy, G. Krafft, V. S. Morozov, R. P. Johnson, T. Roberts, C. Boulware, J. Hollister May.
The International Workshop on Thin Films. Padova 9-12 Oct of slides Present Status of the World- wide Fusion Programme and possible applications.
Nuclear Pharmacy 3. Electron Capture Decay  A parent nucleus may capture one of its own electrons and emit a neutrino (proton is converted to a neutron)
© 2003 By Default! A Free sample background from Slide 1 JINR SCIENTIFIC COUNCIL 102 nd Session, September 2007, Dubna.
Present status of production target and Room design Takashi Hashimoto, IBS/RISP 2015, February.
1 Activation by Medium Energy Beams V. Chetvertkova, E. Mustafin, I. Strasik (GSI, B eschleunigerphysik), L. Latysheva, N. Sobolevskiy (INR RAS), U. Ratzinger.
The 14 MeV Frascati Neutron Generator (FNG)
NPA5, Eilat 7/4/20117/4/2011 Apparatus for intense 8 Li RIB production experiment at SARAF Phase I Tsviki Y. Hirsh 1.
Recent Trends in Radioisotope Production by Using Cyclotron
Development of Cryogenic Moderators Using a Small Proton Accelerator Yoshiaki Kiyanagi*, Fujio Hiraga, Takashi Kamiyama, Akira Homma, Fumiyuki Fujita and.
Course : Inorganic Pharmacy II Course code: PHR 107 Course Teacher : Zara Sheikh Radioactivity and Radiopharmaceuticals.
BNCT, a binary radiotherapy at cellular level
1 RHIC NSRL LINAC Booster AGS Tandems STAR 6:00 o’clock PHENIX 8:00 o’clock 10:00 o’clock Polarized Jet Target 12:00 o’clock RF 4:00 o’clock (AnDY, CeC)
1 1 מ חויבות ל מ צוינות - ג רעין להצלחה 200 kW Liquid Lithium Neutron Source G. Shimel, A. Arenshtam, I. Eliyahu, A. Kreisel, I. Silverman 6 th High Power.
Radiopharmaceutical Production Cyclotron radionuclide production STOP.
Research and Practical Conference “Accelerators and Radiation technologies for the Futures of Russia” September 2012, Saint-Petersburg Neutron Sources.
Plans and Activities at CERN
Investigation of the proton-induced reactions on natural molybdenum.
Energy-broadened proton beam for production of quasi-stellar neutrons
Jeong-Jeung Dang, Kyoung-Jae Chung, Y. S. Hwang *
the s process: messages from stellar He burning
Light Radioactive Beam Production via Two Stage Irradiation Setup
1. Introduction Secondary Heavy charged particle (fragment) production
Comparison of RFQ-Based Compact Neutron Sources
Presentation transcript:

1 1 מ חויבות ל מ צוינות - ג רעין להצלחה BNCT and other studies at Soreq EuCARD2 kickoff meeting Ido Silverman for SARAF team 14/6/2013

2 2 מ חויבות ל מ צוינות - ג רעין להצלחה SARAF Goals  To enlarge the experimental nuclear science infrastructure and promote the research in Israel  To develop and produce radioisotopes primarily for bio-medical applications  To modernize the source of neutrons at Soreq and extend neutron based research and applications

3 3 מ חויבות ל מ צוינות - ג רעין להצלחה Neutron yield from d and p beams  In the range of tens of MeV projectiles, neutron yield from deuterons is higher than that of protons by a factor of 3-5 K. van der Meer, M.B. Goldberg et al. NIM B (2004)

4 4 מ חויבות ל מ צוינות - ג רעין להצלחה SARAF Accelerator requirements  Low energy – moderate accelerator cost  Deuterons – be efficient in neutron production – enable neutron-rich isotope production  Protons – common isotopes production  High intensity – a n flux similar to the IRR1 TNR image plane  Variable energy – be specific in isotopes production  CW – avoid thermal stress in targets  Pulsed – enable beam tuning with space charge (using slow pulses)  Low beam loss – enable hands-on maintenance  superconducting RF linear accelerator

5 5 מ חויבות ל מ צוינות - ג רעין להצלחה ParameterValueComment Ion SpeciesProtons/DeuteronsM/q ≤ 2 Energy Range5 – 40 MeVVariable energy Current Range0.04 – 5 mACW (and pulsed) Operation6000 hours/year Reliability90% MaintenanceHands-OnVery low beam loss Phase I Phase II SARAF Accelerator Complex

6 6 מ חויבות ל מ צוינות - ג רעין להצלחה A. Nagler, Linac2006 K. Dunkel, PAC 2007 C. Piel, PAC 2007 C. Piel, EPAC 2008 A. Nagler, Linac 2008 J. Rodnizki, EPAC 2008 J. Rodnizki, HB 2008 I. Mardor, PAC 2009 A. Perry, SRF 2009 I. Mardor, SRF 2009 L. Weissman, DIPAC 2009 L. Weissman, Linac 2010 J. Rodnizki, Linac 2010 D. Berkovits, Linac 2012 L. Weissman, RuPAC 2012 SARAF phase-I linac - upstream view SARAF phase-I linac – upstream view

7 7 מ חויבות ל מ צוינות - ג רעין להצלחה EIS LEBT RFQ PSM MEBT Phase I D-plate Beam line targets Beam dumps SARAF Q  Linac is operated routinely with CW 1mA protons at ~4 MeV  Phase I commissioned to 50% duty cycle 4.8 MeV deuterons  The accelerator is used most of the time to:  Study high intensity beam tuning  Interface with high intensity targets  Develop of high intensity targets 7 m

8 8 מ חויבות ל מ צוינות - ג רעין להצלחה SARAF applications  Thermal neutrons source for radiography and diffraction  Radio-isotopes production laboratory  Fast neutron source  aBNCT  Radiation damage studies  Basic physics research with radioactive beams

9 9 מ חויבות ל מ צוינות - ג רעין להצלחה Thermal neutron source TNR Diffractometer Thermal neutron source 9 Be(d,xn) beam 6 m Thermal Neutron Radiography (TNR) 2 mA deuteron 40 MeV 100 cm 2 Beryllium target 10 6 n/s/cm 2 on the detector

10 מ חויבות ל מ צוינות - ג רעין להצלחה Production of radio-pharmaceutical isotopes  Today, most radiopharmaceutical isotopes are produced by protons  Deuterons  Production of neutron-rich isotopes via the (d,p) reaction (equivalent to the (n,  ) reaction)  Typically, the (d,2n) cross section is significantly larger than the (p,n) reaction, for A>~100 Hermanne Nucl. Data (2007) I. Silverman et al. NIM B (2007)

11 מ חויבות ל מ צוינות - ג רעין להצלחה RadioisotopesMedical Use 64 Cu (β + ) 89 Zr (β + ) 111 In (γ) 124 I (β + )Diagnostics 68 Ge ( 68 Ga – β + ) 99 Mo ( 99m Tc – γ) Diagnostics Generator 67 Cu ( β - ) 103 Pd (X-rays) 177 Lu ( β - ) 186 Re ( β - ) 211 At ( α) 225 Ac ( α) Therapy Currently Preferred Options

12 מ חויבות ל מ צוינות - ג רעין להצלחה Production of 68 Ge. S. Halfon et al. AccApp11 conference (2011) 69 Ga(p,2n) 68 Ge Physical properties  Half-life = 68 min  Positron branching 89% (PET nuclide)  Available via 68 Ge/ 68 Ga generator  Parent 68 Ge cyclotron produced (T ½ = 271 d) Chemical properties of Gallium  Trivalent metal  Chelation chemistry Applicability  Short half-life useful for molecules with fast biokinetics (peptides, Ab- fragments, small complexes,…)

13 מ חויבות ל מ צוינות - ג רעין להצלחה Lutetium-177 Application of Lutetium-177  Currently, produced in reactors via 176 Lu (n,  ) 177 Lu;  Use for therapy with ability to employ dosimetry;  Labeling: peptides, proteins and antibodies. Physical properties  Half-life = 6.7 days  E  - = 490 keV / E  = 113 keV (3%), 210 keV (11%) Targe Linker SST 177 Lu

14 מ חויבות ל מ צוינות - ג רעין להצלחה *Hermanne A., et al, Int. Conf. on Nuc. Data for Science and Tec (2007 ) Activity (EOB)Irritation TimeCurrent / fluxTarget TypeFacility 3000 Ci/gr7 d3*10 13 n/cm 2 sEnriched Lu-176Reactor 222 Ci200 h5 mAEnriched Yb-176SARAF 28 Ci200 h5 mANatural YbSARAF Production of 177 Lu in SARAF  Via 176 Yb(d,x) 177 Lu (21MeV);  The production of Lu-177 can be carried out only by deuterons!  The product is carrier-free (No Lu-176 or Lu-177m)  Collaboration of Soreq NRC and Hadassah Medical Organization, Jerusalem;

15 מ חויבות ל מ צוינות - ג רעין להצלחה Why Alpha?  Effective cell-killing due to high LET (100 keV/  m);  Penetration (40-80  m) ideal for killing  -metastases without compromising neighboring healthy tissues;  Effective under hypoxic conditions;  Does not require high dose-rate (1 mCi);  The damage to the DNA is non-repairable;  The cytotoxic effectiveness of  -particles is negligible and does not depend on the cell cycle status.

16 מ חויבות ל מ צוינות - ג רעין להצלחה 225 Ac – Advantages  225 Ac: T ½ = 10 days; 213 Bi: T ½ = 46 min;  4  -emission at each decay (6 MeV) – high efficiency;  Ability to employ dosimetry;  Can be produced by SARAF at high yields.  225 Ac: clinical trials phase I : AML;  213 Bi: clinical trials phase I : AML, malignant, melanoma, Non- Hodgkin's lymphoma, NET;  225 Ac & 213 Bi: preclinical trials: Neuroblastoma, Breast, Prostate, Ovarian, NET, Lymphoma, Bladder…..

17 מ חויבות ל מ צוינות - ג רעין להצלחה Liquid Lithium Target - LiLiT 7 Li(p,n) 7 Be E th =1.880 MeV Jet chamber liquid lithium beam The basis for most of the R&D at SARAF Liquid target enables utilization of the SARAF high power beam At SARAF Phase I: At SARAF Phase II: An upgrade of LiLiT will be used with a deuteron beam to produce faster neutrons and higher flux M. Paul (HUJI)

18 מ חויבות ל מ צוינות - ג רעין להצלחה Lithium jet circulating Measured velocity 7 m/s Maximum e power density 2.0 MW/cm 4 m/s S. Halfon et al. App. Rad. Isot. 2011, INS , CARRI mm

19 מ חויבות ל מ צוינות - ג רעין להצלחה E-gun thermal deposition tests 60 mA, 26 keV (~1.5 kW), σ=2.8 mm electrons in lithium (CASINO)  E-gun tests: High intensity – 26 keV, ~60 mA electron gun emulate the power deposition peak of SARAF 1.91 MeV proton beam- up to 3 mA. kW/cm 3 1 mA, 1.91 MeV (2 kW), σ=2.8 mm protons in lithium (TRIM) kW/cm 3 1 mA, 1.91 MeV, σ=2.8 mm protons in lithium (Bragg peak area) kW/cm 3

20 מ חויבות ל מ צוינות - ג רעין להצלחה E-gun experiments results Electron beam power and vacuum in target chamber:

21 מ חויבות ל מ צוינות - ג רעין להצלחה LiLiT installation at SARAF

22 מ חויבות ל מ צוינות - ג רעין להצלחה LiLiT installation at SARAF

23 מ חויבות ל מ צוינות - ג רעין להצלחה Boron Neutron Capture Therapy (BNCT) 1. Selectively deliver 10 B to the tumor cells 2. Irradiate the target region with neutrons 3. The short range of the 10 B(n,  ) 7 Li reaction product, 5-8  m in tissue, restrict the dose to the boron loaded area n n n n n Li B 10 ~ B atoms in cell α

24 מ חויבות ל מ צוינות - ג רעין להצלחה Accelerator-based BNCT O.E. Kononov et. al., Atomic energy, 94 (2003) 6 E. Bisceglie et al. Phys Med. Biol. 45 (2000) 49 Neutron flux: Optimal ≈10 9 s -1 cm -2 on beam port ** (for ~1 hour therapy) SARAF lithium target >10 10 s -1 mA -1 – Neutrons spectrum from lithium target bombarded with 1.91 MeV proton S. Halfon et al. ICNCT 2008 S. Halfon et. al., Appl Radiat Isot Paul et al. US patent WO/2009/ S. Halfon et al., App. Rad. Isot S. Halfon et al. INS I. Silverman et al. CARRI 2012 S. Halfon et al. ICNCT Produces the most suitable neutron spectrum for therapy 2.Accelerator free of residual activity 3.Small – can be installed in hospital 4.Good public acceptability 5.Relatively low cost M. Paul (HUJI)

25 מ חויבות ל מ צוינות - ג רעין להצלחה Low Energy Linac Middle Energy Linac Linac/ Cyclotron Accelerators MeV8-15 MeV MeVEnergy (protons) mA5-10 mA1-3 mAAverage beam current Lithium (solid or liquid) Beryllium (solid) Target Up to1 MeVUp to15 MeV (peak at 1 MeV) Up to 30 MeV (peak at 1 MeV) Neutron energy at the target SmallLarge Moderator and radiation shield size High current linac, target High current linacAlmost nothingTechnical obstacles Feasibility study at SARAF phase I Clinical system at SARAF phase II Comparison of accelerators solutions

26 מ חויבות ל מ צוינות - ג רעין להצלחה Comparison of neutrons flux density SARAFSPIRAL II *IFMIF *Project d(40MeV) +Lid(40MeV) + Cd(40MeV) +Li Reaction specification Projectile range in target (mm) 552 x 125 Maximum beam current (mA) ~1~10~100 Beam spot on the target (cm 2 ) Beam density on the target (mA/cm 2 ) ~0.07~0.03~0.07 Neutron production over 4π (n/deuteron) ~10 15 ~10 17 Neutron source intensity (n/s) ~5∙10 14 ~10 14 ~10 15 Maximal neutron flux on the back-plate [n/(sec ∙ cm 2 )] (0-60 MeV neutrons) ~10~12~10 on the back-plate (MeV) * D.Ridikas et.al. “Neutrons For Science (NFS) at SPIRAL-2 (Part I: material irradiations), Internal Report DSM/DAPNIA/SPhN, CEA Saclay (Dec 2003)

27 מ חויבות ל מ צוינות - ג רעין להצלחה Simulation of stellar neutron spectrum for the study of nucleo-synthesis G. Feinberg et al., PRC 2012, M. Freidman et al., NIM 2013 W. Ratynski and F. Kaeppeler, PR C (1988), Karlsruhe, I~50  A Principal shown at Karlsruhe at low current SARAF + LiLiT will enable study of rare processes with up to 3 mA (factor of 50 w.r.t Karlsruhe) N-capture of 90 Sr is one of first reactions to be studied RF beam produces a broad spectrum, more similar to Maxwellian Measurement of S process cross sections M. Paul (HUJI) 7 Li(p,n) 7 Be E p =1.912 MeV  = 1 keV  = 15 keV

28 מ חויבות ל מ צוינות - ג רעין להצלחה JRC-IAEC Collaboration to measure Neutron Induced Reactions Important for Gen IV Reactor Development and Safety

29 מ חויבות ל מ צוינות - ג רעין להצלחה Yield calculated for a 40 MeV, 1 mA deuteron beam and for a ~ 800 cm 3 cylindrical porous secondary target For 6 He, see ISOLDE Experiment, Stora et al., EPL, 98, (2012) M. Hass (WIS) T. Hirsh (SNRC) SARAF Production of light RIB Two-stage irradiation

30 מ חויבות ל מ צוינות - ג רעין להצלחה 6 He  -decay in electrostatic trap e+e+ e nucleus   - correlation New physics beyond the Standard Model’s V-A structure S. Vaintraub et al. J. of Physics 267 (2011) O. Aviv et al. J. of Physics 337 (2012)

31 מ חויבות ל מ צוינות - ג רעין להצלחה Acknowledgment  Some of the research studies have been partially funded by the Pazi foundation  Some of the research studies have been partially funded by the JRC-IAEA collaboration fund

32 מ חויבות ל מ צוינות - ג רעין להצלחה END

33 מ חויבות ל מ צוינות - ג רעין להצלחה Target vacuum chamber Lithium containment tank, heat exchanger and Be-7 cold trap EM pump loop SARAF Proton Beam LiLiT- Liquid Lithium Target Lithium nozzle (neutron port) Flow-meter S. Halfon et al., Applied Radiation and Isotopes (2011).

34 מ חויבות ל מ צוינות - ג רעין להצלחה Target vacuum chamber Beam Direction Lithium flow Vapor trap Proton beam Lithium nozzle Diagnostic port View port

35 מ חויבות ל מ צוינות - ג רעין להצלחה proton beam liquid lithium flow Emitted neutrons Stainless Steel walls Lithium Nozzle Lithium flow Proton beam Curved thin back-wall Nozzle "ears" Proton beam Lithium flow: 18 mm wide 1.5 mm thick 1 cm