B. Willke, Mar 01 LIGO-G010114-00-Z Laser Developement for Advanced LIGO Benno Willke LSC meeting LIGO-Livingston Site, Mar 2001.

Slides:



Advertisements
Similar presentations
Status of High-Power Laser Development at Stanford Shally Saraf*, Supriyo Sinha, Arun Kumar Sridharan and Robert L. Byer E. L. Ginzton Laboratory, Stanford.
Advertisements

One Arm Cavity M0 L1 L2 TM M0 L1 L2 TRIPLE QUAD 16m R = 20m, T=1% R = ∞, T=1%  Optimally coupled cavity (no mode matched light reflected back)  Finesse.
G R LIGO Laboratory1 Advanced LIGO Research and Development David Shoemaker LHO LSC 11 November 2003.
10W Injection-Locked CW Nd:YAG laser
CNMFrascati 12/01/061 High Power Laser System for Advanced Virgo C.N.Man Design goals Present technology Other activities in the world Virgo+ and Laser.
Harald Lück, AEI Hannover 1 GWADW- May, 10-15, 2009 EU contract #
Adaptive Optics for Wavefront Correction of High Average Power Lasers Justin Mansell, Supriyo Sinha, Todd Rutherford, Eric Gustafson, Martin Fejer and.
LIGO-G W 1 Increasing the laser power incident on the recycling mirrors Doug Cook and Rick Savage LIGO commissioning meeting Dec. 22, 2003 Ref.
LIGO-G W Performance of the LIGO I PSL at the LIGO Hanford Observatory Rick Savage LIGO Hanford Observatory Laser Zentrum Hannover November 15,2000.
LIGO-G W LIGO II Pre-stabilized Laser System Design Requirements and Conceptual Design David Ottaway, Todd Rutherford, Rick Savage, Peter Veitch,
Performance of the LIGO Pre-stabilized Laser System Rick Savage LIGO Hanford Observatory Ninth Marcel Grossmann Meeting on General Relativity Rome 2000.
LIGO-G W 2005 CLEO/QELS Joint Symposium on Gravitational Wave Detection 1 High-Power Stabilized Lasers and Optics of GW Detectors Rick Savage.
LISA symp July 02, PSU 1 Technologies for the Future of interferometric detectors C. Nary MAN UMR 6162, Observatoire Cote d’Azur, BP 4229,
Q09/2001 The GEO 600 Laser System LIGO-G Z V. Quetschke°, M. Kirchner°, I.Zawischa*, M. Brendel*, C. Fallnich*, S. Nagano +, B. Willke° +, K.
LSU Amplifier Experiments Rupal S. Amin (LSU) J. Giaime (LSU), D. Hosken (Uni. Adelaide), D. Ottaway (MIT) LSC/VIRGO Meeting March 2007 Lasers Working.
GEO600 Harald Lück Ruthe, Worldwide Interferometer Network.
October 16-18, 2012Working Group on Space-based Lidar Winds 1 AEOLUS STATUS Part 1: Design Overview.
Status of the advanced LIGO laser O. Puncken, L. Winkelmann, C. Veltkamp, B. Schulz, S. Wagner, P. Weßels, M. Frede, D. Kracht.
LIGO-G v5 1 Pre-stabilized Laser System (PSL) Technical Status NSF Review of Advanced LIGO Project Benno Willke, AEI Hannover and the AdvLIGO PSL.
The GEO 600 Detector Andreas Freise for the GEO 600 Team Max-Planck-Institute for Gravitational Physics University of Hannover May 20, 2002.
LIGO-G M LIGO R&D 1 Advanced R&D: Optics Core Optics Input Optics Core Optic Thermal Compensation.
GEO600 Detector Status Harald Lück Max-Planck Institut für Gravitationsphysik Institut für Atom- und Molekülphysik, Uni Hannover.
Advanced LIGO laser development P. Weßels, L. Winkelmann, O. Puncken, B. Schulz, S. Wagner, M. Hildebrandt, C. Veltkamp, M. Janssen, R. Kluzik, M. Frede,
1 Wan Wu, Volker Quetschke, Ira Thorpe, Rodrigo Delgadillo, Guido Mueller, David Reitze, and David Tanner Noise associated with the EOM in Advanced LIGO.
©LZH M.Frede Aug.02 G Z Status of Laser Zentrum Hannover Laser Program Maik Frede Martina Brendel, Carsten Fallnich, Renê Gau, Philipp Huke, Ralf.
LIGO-G M Major International Collaboration in Advanced LIGO R&D Gary Sanders NSF Operations Review Hanford February, 2001.
G Z LIGO R&D1 Input Optics Definition, Function The input optics (IO) conditions light from the pre- stabilized laser (PSL) for injection into.
50 W Laser Concepts for Initial LIGO Lutz Winkelmann, Maik Frede, Ralf Wilhelm, Dietmar Kracht Laser Zentrum Hannover LSC March 05 Livingston G Z.
©LZH Livingston, La.; LIGO-G Status of 100 W Rod System at LZH Laserzentrum Hannover e. V. Hollerithallee 8 D Hannover Germany.
Stanford High Power Laser Lab Status of high power laser development for LIGO at Stanford Shally Saraf*, Supriyo Sinha, Arun Kumar Sridharan and Robert.
David Shoemaker Aspen 3 February 03
LIGO-G D LIGO R&D1 Advanced LIGO R&D Review The PSL Peter King & Rich Abbott October 8, 2002.
Performance Testing of a Risk Reduction Space Winds Lidar Laser Transmitter Floyd Hovis, Fibertek, Inc. Jinxue Wang, Raytheon Space and Airborne Systems.
Pre-stabilized laser (PSL) for AdV Scope of the system Main tasks Requirements Reference solution and status of the design Plans towards completion Technical.
Status of GEO600 Benno Willke for the GEO600 team Aspen Meeting Aspen CO, January 2005 LIGO-G Z.
Status of the Advanced LIGO PSL development LSC Virgo meeting, Caltech, March 2008 LIGO G Z Benno Willke for the PSL team.
1 Intensity Stabilization in Advanced LIGO David Ottaway (Jamie Rollins Viewgraphs) Massachusetts Institute of Technology March, 2004 LSC Livingston Meeting.
©LZH ZA GEO 600 Laser System as in the optics lab of Callinstraße 38 at LIGO-G D.
Development of high-power and stable laser for gravitational wave detection Mio Laboratory Kohei Takeno.
Status of the Advanced LIGO PSL development LSC meeting, Baton Rouge March 2007 G Z Benno Willke for the PSL team.
Status of High-Power Laser Development at Stanford Todd S. Rutherford*, Shailendhar Saraf, Karel Urbanek, Justin Mansell, Eric K. Gustafson, and Robert.
Dual Recycling in GEO 600 H. Grote, A. Freise, M. Malec for the GEO600 team Institut für Atom- und Molekülphysik University of Hannover Max-Planck-Institut.
Laser system for LCGT Norikatsu MIO.
Studies of Thermal Loading in Pre-Modecleaners for Advanced LIGO Amber Bullington Stanford University LSC/Virgo March 2007 Meeting Optics Working Group.
AdvLIGO Laser Status Lutz Winkelmann, Maik Frede, Oliver Puncken, Bastian Schulz Ralf Wilhelm, and Dietmar Kracht Laser Zentrum Hannover Frank Seifert,
Initial and Advanced LIGO Status Gregory Harry LIGO/MIT March 24, 2006 March 24, th Eastern Gravity Meeting G R.
LIGO Scientific Collaboration Lasers and Optics Working Group 6 Month Report to the LSC - August 15, 2000 Outline Highlights Meeting Agenda LIGO-G D.
Ultra-stable, high-power laser systems Patrick Kwee on behalf of AEI Hannover and LZH Advanced detectors session, 26. March 2011 Albert-Einstein-Institut.
G R Advanced LIGO1 David Shoemaker LLO LSC 19 Aug 2002.
LIGO-G Z Silicon as a low thermal noise test mass material S. Rowan, R. Route, M.M. Fejer, R.L. Byer Stanford University P. Sneddon, D. Crooks,
ALIGO 0.45 Gpc 2014 iLIGO 35 Mpc 2007 Future Range to Neutron Star Coalescence Better Seismic Isolation Increased Laser Power and Signal Recycling Reduced.
High power lasers and their stabilization Benno Willke ET Workshop, Cascina 2008.
LIGO-G W Status of the LHO PSLs Rick Savage LIGO Hanford Observatory LIGO Scientific Collaboration Meeting August 13-16, 2001.
GEO600 – The output mode cleaner Mirko Prijatelj for the GEO600-Team Institute for Gravitational Physics Albert-Einstein-Institute Hannover / Germany.
Single-frequency fiber amplifier development for next- generation GWDs
NSF Annual Review of the LIGO Laboratory
Current Situation of Yb:YAG Laser at A1 Ground Laser Hut
Laser System Upgrade Overview
Fiber lasers for GW detectors
GW related research activities in Hannover UNI/AEI
Update on the Advanced LIGO PSL Program
Advanced LIGO Quad Prototype Janeen Romie LSC, March 2004
Nd:YAG Solid Laser 3-2 / A-1 on the ground
J. Kovalik, LIGO Livingston Observatory
Lasers for Advanced Interferometers
Present status of the laser system for KAGRA
Overview of Advanced LIGO
Improving LIGO’s stability and sensitivity: commissioning examples
Squeezed Light Techniques for Gravitational Wave Detection
Presentation transcript:

B. Willke, Mar 01 LIGO-G Z Laser Developement for Advanced LIGO Benno Willke LSC meeting LIGO-Livingston Site, Mar 2001

B. Willke, Mar 01 LIGO-G Z LIGOII PSL – requirements Fourier Frequency (Hz) Frequency Noise Spectral Density (Hz/Hz 1/2 ) k k10 -2 Fourier Frequency (Hz) Power Noise Spectral Density (1/Hz 1/2 ) k k MHz technical noise <10% shot noise of 1W 180W in gausian TEM 00 mode less than 10W in non - TEM 00 modes

B. Willke, Mar 01 LIGO-G Z LIGOII PSL – subsystem layout front end power stages mode cleaner pre- mode cleaner reference cavity long baseline cavities 20W 200W 180W frequency stabilization power stabilizaiton

B. Willke, Mar 01 LIGO-G Z LIGOII PSL – project stages develop concepts design and build laboratory version design and build final version PSL fabrication PSL installation

B. Willke, Mar 01 LIGO-G Z develop concepts increase power of front-end evaluate high-power-stage concepts –MOPA slab (Stanford) –stable-unstable slab oscillator (Adelaide) –rod systems (Hannover) test power and frequency stabilization schemes

B. Willke, Mar 01 LIGO-G Z Laser for GEO600: Injection Locked Ring Laser

B. Willke, Mar 01 LIGO-G Z Nd:YAG Master-Laser NPRO (non-planar ring oscillator) by Innolight* output power: 800mW frequency noise: [ 10kHz/f ] Hz/sqrt(Hz) power noise: /sqrt(Hz) * US dristibution: Resonant optics Corp., San Martin CA

B. Willke, Mar 01 LIGO-G Z Laser for GEO600: Injection Locked Ring Laser

B. Willke, Mar 01 LIGO-G Z GEO 600 Slave Laser

B. Willke, Mar 01 LIGO-G Z GEO 600 Slave Laser Prototype II Frequency Stability

B. Willke, Mar 01 LIGO-G Z Power Scaling of End Pumped Nd:YVO 4 Advantages of Nd:YVO 4 1) amplifies 1064 nm emission of Nd:YAG (basic requirement) birerefingence n a = 1.96 / n c = 2.17  no depolarization emission  || = 25x cm -2   = 7x cm -2  polarized emission large product of  ||  sp (  sp  90  s)  loss insensitive high gain lasers 8 nm broad 808 nm  low requirements on pump diodes Disadvantage of Nd:YVO 4 1) low pump intensity damage threshold 58 W / mm 0.5 % doping 29 W / mm 1.0 % doping increased by 50 % by undoped endcaps 1) Data from Y.-F. Chen, IEEE J. Q. E. 35(2), 234 (1999) / Tsunekane et. al. Elt. Lett. 32(1), 41 (1996) / VLOC, Casix, Castech web pages

B. Willke, Mar 01 LIGO-G Z Stanford MOPA design

B. Willke, Mar 01 LIGO-G Z results Stanford Jan01 12W injection locked laser was shipped to Stanford and showed stable operations 27W stable operation of first ampl. stage some fluid (oil ?) developed on the entrance surface of second ampl. slab and degraded its performance for powers above 35W

B. Willke, Mar 01 LIGO-G Z Adelaide 100W configuration

B. Willke, Mar 01 LIGO-G Z design and build lab-version design reliable laser heads for power stages include suitable actuators in laser design integrate stabilized front-end, high- power-stages and pre-modecleaner design power stabilization (in-loop test)

B. Willke, Mar 01 LIGO-G Z design and build final version optimize design according to lessons learned with lab-version and including system aspects like reliability, safety, robustness, automation and system interfaces (DAQ, power, cooling,...) keep flexibility to react on long-term behavior of lab-version

B. Willke, Mar 01 LIGO-G Z PSL fabrication & installation quality check system integration (if components are fabricated at different locations) reproducibility user training

B. Willke, Mar 01 LIGO-G Z Laser Zentrum Hannover Max-Planck Institut University of Glasgow University of Hannover GEO600 pre-stabilized laser High-power solid- state-lasers design power and frequency stabilization LIGOII pre-stabilized laser LIGO Lab Stanford Adelaide the LIGOII laser-team

B. Willke, Mar 01 LIGO-G Z LIGOII laser-team 4 FTE Laser Zentrum Hannover – Fallnich, Ralf, Ivo, Mike, Martina 1 FTE Stanford - Rutherford 1 FTE Adelaide - Veitch 3 FTE University Hannover/Max-Planck-Group – Willke, Kirchner, Weidner, Nagano 1 FTE Glasgow –Ward, Robertson 1 FTE LIGO –King, Abbott workshop support Hannover / CDS

B. Willke, Mar 01 LIGO-G Z LIGOII Laser – project plan concept phase (100W)Jan01 - Apr02 lab-version phase (200W)Apr02 – Feb04 longterm test (Hannover/LASTI)Feb04 – Feb 05 final version phaseFeb04 – Jul05 installation PSL1Jul05 – Feb06 fabr. & inst. PSL2&3 Feb06 –Oct06