„To bunch or not to bunch” Tóvári Endre Journal Club 2013. márc. 8. Coherence and Indistinguishability of Single Electrons Emitted by Independent Sources.

Slides:



Advertisements
Similar presentations
A coherent subnanosecond single electron source
Advertisements

Separation of neutral and charge modes in one dimensional chiral edge channels
Classical behaviour of CW Optical Parametric Oscillators T. Coudreau Laboratoire Kastler Brossel, UMR CNRS 8552 et Université Pierre et Marie Curie, PARIS,
The idea of the correlation femtoscopy is based on an impossibility to distinguish between registered particles emitted from different points because.
Proposal for ½ MW photo-fission driver based on TESLA 1.3 GHz SCRF technology (Shane Koscielniak, 09 Nov 2007) Electron Linac CANADA ’ S NATIONAL LABORATORY.
Resonant gratings for narrow band pass filtering applications
A 14-kg mass, attached to a massless spring whose force constant is 3,100 N/m, has an amplitude of 5 cm. Assuming the energy is quantized, find the quantum.
Markus Büttiker University of Geneva The Capri Spring School on Transport in Nanostructures April 3-7, 2006 Scattering Theory of Conductance and Shot Noise.
Single Molecule Fluorescence from Organic Dyes in Thin Polymer Films Robin Smith and Carl Grossman, Swarthmore College March 5, 2003.
Multi-terminal spin dependent transport in carbon nanotubes Chéryl FEUILLET-PALMA Laboratoire Pierre Aigrain Ecole Normale Supérieure, Paris France Co-workers.
S. Y. Hsu ( 許世英 ) and K. M. Liu( 劉凱銘 ) May 29, 2007 NSC M and NSC M Department of Electrophysics, National Chiao Tung University.
Phys 102 – Lecture 25 The quantum mechanical model of light.
Indistinguishability of emitted photons from a semiconductor quantum dot in a micropillar cavity S. Varoutsis LPN Marcoussis S. Laurent, E. Viasnoff, P.
Thermal Enhancement of Interference Effects in Quantum Point Contacts Adel Abbout, Gabriel Lemarié and Jean-Louis Pichard Phys. Rev. Lett. 106,
The noise spectra of mesoscopic structures Eitan Rothstein With Amnon Aharony and Ora Entin Condensed matter seminar, BGU.
Photon Supression of the shot noise in a quantum point contact Eva Zakka Bajjani Julien Ségala Joseph Dufouleur Fabien Portier Patrice Roche Christian.
Julien Gabelli Bertrand Reulet Non-Gaussian Shot Noise in a Tunnel Junction in the Quantum Regime Laboratoire de Physique des Solides Bât. 510, Université.
Single-shot read-out of an individual electron spin in a quantum dot J. M. Elzerman, R. Hanson, L. H. Willems van Beveren, B. Witkamp, L. M. K. Vandersypen,
Introduction to the Kondo Effect in Mesoscopic Systems.
Visibility of current and shot noise in electrical Mach-Zehnder and Hanbury Brown Twiss interferometers V. S.-W. Chung(鐘淑維)1,2, P. Samuelsson3 ,and.
Lecture 2110/24/05. Light Emission vs. Absorption Black body.
Quantum Electron Optics Electron Entanglement
Electron Scattering Length - Mean Free Path – le - Avg. distance between scattering Si - ~ 5nm; GaAs - ~ 100 nm Electrical Resistance is closely related.
© 2010 Eric Pop, UIUCECE 598EP: Hot Chips Conductance Quantization One-dimensional ballistic/coherent transport Landauer theory The role of contacts Quantum.
Coherence and decoherence in Josephson junction qubits Yasunobu Nakamura, Fumiki Yoshihara, Khalil Harrabi Antti Niskanen, JawShen Tsai NEC Fundamental.
L. Coolen, C.Schwob, A. Maître Institut des Nanosciences de Paris (Paris) Engineering Emission Properties with Plasmonic Structures B.Habert, F. Bigourdan,
Markus Büttiker University of Geneva Haifa, Jan. 12, 2007 Mesoscopic Capacitors.
The noise spectra of mesoscopic structures Eitan Rothstein With Amnon Aharony and Ora Entin University of Latvia, Riga, Latvia.
Particle Properties of Light. Objectives To discuss the particle nature of light.
Observation of neutral modes in the fractional quantum hall effect regime Aveek Bid Nature (2010) Department of Physics, Indian Institute of Science,
Waveform 2.1 Basic Digital Waveforms 2 Measurement Paul Godin Updated October 2009.
Single Photon Emitters and their use in Quantum Cryptography Presentation by: Bram Slachter Supervision: Dr. Ir. Caspar van der Wal.
Superconducting proximity effect in graphene,
Modern Physics Wave Particle Duality of Energy and Matter Is light a particle or a wave? We have see that light acts like a wave from polarization, diffraction,
Introduction to Nano-materials
Electrons in Solids Carbon as Example
Hanbury Brown and Twiss Effect Anton Kapliy March 10, 2009.
Laboratoire Matériaux et Microélectronique de Provence UMR CNRS Marseille/Toulon (France) - M. Bescond, J-L. Autran, M. Lannoo 4 th.
Chap. 41: Conduction of electricity in solids Hyun-Woo Lee.
ULIS 2003-Udine Italy Evolution of Si-SiO 2 interface trap density under electrical stress in MOSFETs with ultrathin oxides F. Rahmoune and D. Bauza Institut.
1 Controlling spontaneous emission J-J Greffet Laboratoire Charles Fabry Institut d’Optique, CNRS, Université Paris Sud Palaiseau (France)
UPoN Lyon 2008 G. Albareda 1 G.Albareda, D.Jimenez and X.Oriols Universitat Autònoma de Barcelona - Spain E.mail: Can analog and.
L4 ECE-ENGR 4243/ FJain 1 Derivation of current-voltage relation in 1-D wires/nanotubes (pp A) Ballistic, quasi-ballistic transport—elastic.
Quantum Optics with single Nano-Objects. Outline: Introduction : nonlinear optics with single molecule Single Photon sources Photon antibunching in single.
Nonlocal quantum coherence between normal probes placed on a superconductor is predicted to occur through two microscopic processes. In crossed Andreev.
Waves, Light & Quanta Tim Freegarde Web Gallery of Art; National Gallery, London.
Topic 5: Schrödinger Equation
Quantum pumping and rectification effects in interacting quantum dots Francesco Romeo In collaboration with : Dr Roberta Citro Prof. Maria Marinaro University.
Positive HBT/noise cross-correlations in superconducting hybrids: Role of disorder R. Melin, C. Benjamin and T. Martin, Phys. Rev. B 77, (2008)
Radio-frequency single-electron transistor (RF-SET) as a fast charge and position sensor 11/01/2005.
1 of xx Coulomb-Blockade Oscillations in Semiconductor Nanostructures (Part I & II) PHYS 503: Physics Seminar Fall 2008 Deepak Rajput Graduate Research.
Cavity soliton switching and pattern formation in an optically-pumped vertical-cavity semiconductor amplifier Laboratoire de Photonique et de Nanostructures.
Mesoscopic physics and nanotechnology
Chapter 5: Quantum Mechanics
Charge pumping in mesoscopic systems coupled to a superconducting lead
Zoltán Scherübl BME Nanophysics Seminar - Lecture
Single Electron Transistor (SET) CgCg dot VgVg e-e- e-e- gate source drain channel A single electron transistor is similar to a normal transistor (below),
Microwave Mesoscopics Speckle and Phase Singularity Evolution for Diffusive and Localized Waves Patrick Sebbah Laboratoire de Physique de la Matière Condensée.
Electronic transport in one-dimensional wires Akira Furusaki (RIKEN)
Basics of edge channels in IQHE doing physics with integer edge channels studies of transport in FQHE regime deviations from the ‘accepted’ picture Moty.
Flat Band Nanostructures Vito Scarola
Orbitally phase coherent spintronics
Classification by statistics
Concept test 15.1 Suppose at time
Peter Samuelsson, Sara Kheradsoud, Björn Sothmann
Concept test 15.1 Suppose at time
Coulomb Blockade and Single Electron Transistor
Digital Fundamentals Floyd Chapter 1 Tenth Edition
The noise spectrum of a quantum dot
by A. Sipahigil, R. E. Evans, D. D. Sukachev, M. J. Burek, J
Presentation transcript:

„To bunch or not to bunch” Tóvári Endre Journal Club márc. 8. Coherence and Indistinguishability of Single Electrons Emitted by Independent Sources Science 339, 1054 (2013) Science 339, 1041 (2013) Two Indistinguishable Electrons Interfere in an Electronic Device

Coherence and Indistinguishability of Single Electrons Emitted by Independent Sources E. Bocquillon,1 V. Freulon,1 J.-M Berroir,1 P. Degiovanni,2 B. Plaçais,1 A. Cavanna,3 Y. Jin,3 G. Fève1* 1 Laboratoire Pierre Aigrain, Ecole Normale Supérieure, CNRS (UMR8551), Université Pierre et Marie Curie, Université Paris Diderot, 24 rue Lhomond, Paris Cedex 05, France. 2 Université de Lyon, Fédération de Physique AndréMarie Ampère, CNRS–Laboratoire de Physique de l’Ecole Normale Supérieure de Lyon 46 Allée d’Italie, Lyon Cedex 07, France. 3 CNRS–Laboratoire de Photonique et de Nanostructures Route de Nozay, Marcoussis, France. Two Indistinguishable Electrons Interfere in an Electronic Device Christian Schönenberger Department of Physics, University of Basel

Új kísérletek a nanofizikában - előadásjegyzet

bunching antibunching coincidenceNoise vs delay time Hong-Ou-Mandel (HOM) dip Dip size and shape depends on wave packet overlap and width τ e

Indistinguishable electrons needed DC voltage: continuous stream of electrons but 2-e - interference cannot be interpreted as overlap between 2 single-particle wave packets Triggered AC emitter: generating 1-e - wave packets at well-defined times Realization: Quantum dots: charge quantization Quantum Hall regime: ballistic, 1D, chiral edge channels AlGaAs/GaAs 2DEG n=1,9x cm -2 µ=2,4x10 6 cm 2 /Vs B=2,68T, ν=3 filling factor QD addition energy Δ=1,4K electron temperature 100 mK

QDot: 2,1 GHz square wave on top gate: p2p amplitude is the addition energy Δ  e - followed by h + τ e =58±7 ps average emission time Tunnel coupling (with D=0,45±0,05 transmission) to an edge channel Tunnel emission of single particles form a discrete dot level: exponential decay confirmed emission trigger τ e : average emission time T=1/2 2DEG

Probability of different outputs: Probability of exiting at the same output: (fermions) τ>> τ e : classical case Perfectly indistinguishable states:

Normalized by the classical value e 2 f: Antibunching with the thermal excitations: if, we must subtract the noise when both sources are switched off (one source off) antibunching of single indistinguishable fermions

( ) Blue line: τ e =62±10 ps γ=0,45±0,05 non-unit overlap τ 0 =13±6 ps QDot: τ e =58±7 psa verage emission time Tunnel coupling (with D=0,45±0,05 transmission) to an edge channel 10 ps synchronization Red line: Floquet scattering γ = 0.5, D 1 = D 2 = 0.4, Δ 1 = Δ 2 = 1.4K, and T = 100 mK. Non-unit overlap γ: possibly Δ/10 difference in QD levels maybe τ c ≈100 ps coherence time: