Chapter 1 Introduction Circuit/Packet Switching Protocols Computer Networking: A Top Down Approach, 5 th edition. Jim Kurose, Keith Ross Addison-Wesley,

Slides:



Advertisements
Similar presentations
Introduction 2 1: Introduction.
Advertisements

Dr. Philip Cannata 1 Computer Networking. Dr. Philip Cannata 2.
James 1:5 If any of you lacks wisdom, he should ask God, who gives generously to all without finding fault, and it will be given to him.
1 Computer Networks and Communications [Δίκτυα Υπολογιστών και Επικοινωνίες] Lectures 2&3: What is the Internet? Univ. of the Aegean Financial and Management.
Introduction© Dr. Ayman Abdel-Hamid, CS4254 Spring CS4254 Computer Network Architecture and Programming Dr. Ayman A. Abdel-Hamid Computer Science.
Lecture 2 Introduction 1-1 Chapter 1: roadmap 1.1 What is the Internet? 1.2 Network edge  end systems, access networks, links 1.3 Network core  circuit.
5: DataLink Layer5-1 Chapter 5 Link Layer and LANs Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition. Jim Kurose, Keith Ross.
CS 325 Computer Networks Sami Rollins Fall 2003.
Network Layer4-1 Chapter 4 Network Layer Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition. Jim Kurose, Keith Ross Addison-Wesley,
1-1 Foundation Objectives: 1.1 What’s the Internet? 1.2 Network edge 1.3 Network core 1.4 Network access and physical media 1.5 Internet structure and.
Lecture Internet Overview: roadmap 1.1 What is the Internet? (A simple overview last week) Today, A closer look at the Internet structure! 1.2 Network.
1 Day 01 - The Internet. 2 Chapter 1 Introduction Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition. Jim Kurose, Keith Ross.
Lecture Internet Overview: roadmap 1.1 What is the Internet? 1.2 Network edge  end systems, access networks, links 1.3 Network core  circuit switching,
6: Wireless and Mobile Networks Wireless LANs.
Lecture Internet Overview: roadmap 1.1 What is the Internet? 1.2 Network edge  end systems, access networks, links 1.3 Network core  circuit switching,
Introduction1-1 CS 325 Computer Networks Sami Rollins Fall 2005.
What’s the Internet: “nuts and bolts” view
1-1 CS 456 – Computer Networks □ Instructor: Ian Goldberg □ Classes: Tuesday and Thursday 8:30 – 9:50am MC 4063 (section.
1: Introduction1 Part I: Introduction Goal: r get context, overview, “feel” of networking r more depth, detail later in course r approach: m descriptive.
Chapter 1 Introduction Computer Networking: A Top Down Approach 6th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 A note on the use of these.
Introduction1-1 Chapter 1 Computer Networks and the Internet Computer Networking: A Top Down Approach Featuring the Internet, 2 nd edition. Jim Kurose,
CS 3830 Day 2 Introduction 1-1. Announcements  Program 1 posted on the course web  Project folder must be in 1DropBox on S drive by: 9/14 at 3pm  Must.
Introduction 1-1 Lecture 3 Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 CS3516: These slides.
Introduction 1-1 Chapter 1 Introduction Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 A note on.
1 Computer Communication & Networks Lecture 4 Circuit Switching, Packet Switching, Delays Waleed.
Introduction Protocol “layers” Networks are complex, with many “pieces”:  hosts  routers  links of various media  applications  protocols  hardware,
Introduction Chapter 1 Introduction Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition. Jim Kurose, Keith Ross Addison-Wesley,
Introduction 1-1 Chapter 1: roadmap 1.1 What is the Internet? 1.2 Network edge  end systems, access networks, links 1.3 Network core  circuit switching,
Slides originally from Professor Williamson at U Calgary1-1 Introduction Part II  Network Core  Delay & Loss in Packet-switched Networks  Structure.
Introduction 1-1 Chapter 1 Part 2 Network Core These slides derived from Computer Networking: A Top Down Approach, 6 th edition. Jim Kurose, Keith Ross.
Introduction 1-1 Chapter 1 Introduction Computer Networking: A Top Down Approach, 5 th edition. Jim Kurose, Keith Ross Addison-Wesley, April 2009.
Chapter 6 Wireless and Mobile Networks Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 A note on.
Introduction Switches and Access. 2 Chapter 1 Introduction Computer Networking: A Top Down Approach Featuring the Internet, 5 rd edition. Jim.
Chapter 3 Transport Layer
RSC Part I: Introduction Redes y Servicios de Comunicaciones Universidad Carlos III de Madrid These slides are, mainly, part of the companion slides to.
Chapter 4 Network Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 A note on the use of these.
Transport Layer3-1 Chapter 3 Transport Layer Computer Networking: A Top Down Approach Featuring the Internet, 2 nd edition. Jim Kurose, Keith Ross Addison-Wesley,
Introduction1-1 Chapter 1 Computer Networks and the Internet Computer Networking: A Top Down Approach Featuring the Internet, 2 nd edition. Jim Kurose,
Internet Protocol Stack Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012.
Introduction1-1 Data Communications and Computer Networks Chapter 1 CS 3830 Lecture 1 Omar Meqdadi Department of Computer Science and Software Engineering.
OSI Model Data Communications. 7 layer “research” model ApplicationPresentationSessionTransportNetworkLinkPhysical.
Transport Layer3-1 Chapter 3 Transport Layer Computer Networking: A Top Down Approach 4 th edition. Jim Kurose, Keith Ross Addison-Wesley, July A.
Introduction1-1 Chapter 1 Computer Networks and the Internet Computer Networking: A Top Down Approach Featuring the Internet, 2 nd edition. Jim Kurose,
Introduction 1-1 Chapter 1 Introduction Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 A note on.
EEC-484/584 Computer Networks
Introduction1-1 Chapter 1 Computer Networks and the Internet Computer Networking: A Top Down Approach Featuring the Internet, 2 nd edition. Jim Kurose,
Computer Networking II Course Outline - introduction -Network Layer -Wireless and Mobile Networks -Multimedia Networking -Network Management -Network Security.
Introduction1-1 Computer Network (  Instructor  Ai-Chun Pang 逄愛君, m Office Number: 417  Textbook.
Chapter 4 Network Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 A note on the use of these.
CSE 413: Computer Network Circuit Switching and Packet Switching Networks Md. Kamrul Hasan
Introduction1-1 Data Communications and Computer Networks Chapter 1 CS 3830 Lecture 2 Omar Meqdadi Department of Computer Science and Software Engineering.
Chapter 4 Network Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 A note on the use of these.
Introduction 1-1 1DT057 Distributed Information Systems Chapter 1 Introduction.
A special acknowledge goes to J.F Kurose and K.W. Ross Some of the slides used in this lecture are adapted from their original slides that accompany the.
Introduction1-1 Data Communications and Computer Networks Chapter 1 CS 3830 Lecture 3 Omar Meqdadi Department of Computer Science and Software Engineering.
A special acknowledge goes to J.F Kurose and K.W. Ross Some of the slides used in this lecture are adapted from their original slides that accompany the.
CS 5565 Network Architecture and Protocols
Graciela Perera Introduction Graciela Perera
Day 01 - The Internet.
Slides taken from: Computer Networking by Kurose and Ross
A Taxonomy of Communication Networks
Chapter 3 Transport Layer
Comp 365 Computer Networks Chapter 1 Part 2 Network Core Fall 2014
רשתות תקשורת מחשבים עמית דביר A note on the use of these ppt slides:
Chapter 1: roadmap 1.1 What is the Internet? 1.2 Network edge
Network Core and QoS.
Network Core and QoS.
Chapter 4 Network Layer A note on the use of these ppt slides:
Comp 410 AOS Packet Switching
Presentation transcript:

Chapter 1 Introduction Circuit/Packet Switching Protocols Computer Networking: A Top Down Approach, 5 th edition. Jim Kurose, Keith Ross Addison-Wesley, April A note on the use of these ppt slides: We’re making these slides freely available to all (faculty, students, readers). They’re in PowerPoint form so you can add, modify, and delete slides (including this one) and slide content to suit your needs. They obviously represent a lot of work on our part. In return for use, we only ask the following:  If you use these slides (e.g., in a class) in substantially unaltered form, that you mention their source (after all, we’d like people to use our book!)  If you post any slides in substantially unaltered form on a www site, that you note that they are adapted from (or perhaps identical to) our slides, and note our copyright of this material. Thanks and enjoy! JFK/KWR All material copyright J.F Kurose and K.W. Ross, All Rights Reserved Introduction 1-1 Slightly edited for Spring 2011

The Network Core  mesh of interconnected routers  the fundamental question: how is data transferred through net?  circuit switching: dedicated circuit per call: telephone net  packet-switching: data sent thru net in discrete “chunks” Introduction 1-2

Network Core: Circuit Switching end-end resources reserved for “call”  link bandwidth, switch capacity  dedicated resources: no sharing  circuit-like (guaranteed) performance  call setup required Introduction 1-3

Network Core: Circuit Switching network resources (e.g., bandwidth) divided into “pieces”  pieces allocated to calls  resource piece idle if not used by owning call (no sharing)  dividing link bandwidth into “pieces”  frequency division  time division Introduction 1-4

Circuit Switching: FDM and TDM FDM frequency time TDM frequency time 4 users Example: Introduction 1-5

Network Core: Packet Switching each end-end data stream divided into packets  user A, B packets share network resources  each packet uses full link bandwidth  resources used as needed resource contention:  aggregate resource demand can exceed amount available  congestion: packets queue, wait for link use  store and forward: packets move one hop at a time  node receives complete packet before forwarding Bandwidth division into “pieces” Dedicated allocation Resource reservation Introduction 1-6

Packet Switching: Statistical Multiplexing  sequence of A & B packets has no fixed timing pattern  bandwidth shared on demand: statistical multiplexing.  TDM: each host gets same slot in revolving TDM frame. A B C 100 Mb/s Ethernet 1.5 Mb/s D E statistical multiplexing queue of packets waiting for output link Introduction 1-7

Packet-switching: store-and-forward  takes L/R seconds to transmit (push out) packet of L bits on to link at R bps  store and forward: entire packet must arrive at router before it can be transmitted on next link  delay = 3L/R (assuming zero propagation delay) Example:  L = 7.5 Mbits  R = 1.5 Mbps  transmission delay = 15 sec R R R L Introduction 1-8

Packet switching versus circuit switching Example:  1 Mb/s link  each user: 100 kb/s when “active” active 10% of time  circuit-switching:  10 users  packet switching:  with 35 users, probability > 10 active at same time is less very low Packet switching allows more users to use network! N users 1 Mbps link Introduction 1-9 …..

Packet switching versus circuit switching  great for bursty data  resource sharing  simpler, no call setup  excessive congestion: packet delay and loss  protocols needed for reliable data transfer, congestion control  Q: How to provide circuit-like behavior?  bandwidth guarantees needed for audio/video apps  still an unsolved problem Is packet switching a “slam dunk winner?” Q: human analogies of reserved resources (circuit switching) versus on-demand allocation (packet-switching)? Introduction 1-10

Protocol “Layers” Networks are complex, with many “pieces”: – hosts – routers – links of various media – applications – protocols – hardware, software Question: Is there any hope of organizing structure of network? Or at least our discussion of networks? Introduction 1-11

Internet protocol stack  application: supporting network applications  FTP, SMTP, HTTP  transport: process-process data transfer  TCP, UDP  network: routing of datagrams from source to destination  IP, routing protocols  link: data transfer between neighboring network elements  Ethernet, (WiFi), PPP  physical: bits “on the wire” application transport network link physical Introduction 1-12

ISO/OSI reference model  presentation: allow applications to interpret meaning of data, e.g., encryption, compression, machine- specific conventions  session: synchronization, checkpointing, recovery of data exchange  Internet stack “missing” these layers!  these services, if needed, must be implemented in application  needed? application presentation session transport network link physical Introduction 1-13