Thomas Jefferson National Accelerator Facility BAM, Gordon Conference 2004 1 Experimental Techniques Where do we come from, where are we going? Bernhard.

Slides:



Advertisements
Similar presentations
Hadron physics with GeV photons at SPring-8/LEPS II
Advertisements

GSI – 13 March – 2004 ELISe collaboration Photonuclear Reactions at Storage Rings V. Nedorezov Institute for Nuclear Research RAS, Moscow,
Compton polarimetry for EIC Jefferson Lab Compton Polarimeters.
Operated by the Southeastern Universities Research Association for the U.S. Depart. Of Energy Thomas Jefferson National Accelerator Facility Lia Merminga.
A polarized solid state target for photon induced double polarization experiments at ELSA H. Dutz TR16 Bommerholz Hartmut Dutz, S. Goertz, A.
1 Electron Beam Polarimetry for EIC/eRHIC W. Lorenzon (Michigan) Introduction Polarimetry at HERA Lessons learned from HERA Polarimetry at EIC.
Chris Tennant Jefferson Laboratory March 15, 2013 “Workshop to Explore Physics Opportunities with Intense, Polarized Electron Beams up to 300 MeV”
Measurement of the  n(p)  K +   (p) at Jefferson Lab Sergio Anefalos Pereira Laboratori Nazionali di Frascati.
Pair Spectrometer Design Optimization Pair Spectrometer Design Optimization A. Somov, Jefferson Lab GlueX Collaboration Meeting September
Upcoming Review of the Hall D Photon Beam and Tagger Richard Jones, University of Connecticut, for the GlueX collaboration GlueX Collaboration Meeting.
K. Moffeit 6 Jan 2005 WORKSHOP Machine-Detector Interface at the International Linear Collider SLAC January 6-8, 2005 Polarimetry at the ILC Design issues.
 *(1520) CrossSection Zhiwen Zhao Physics 745. Λ BARYONS (S = − 1, I = 0) Λ 0 = u d s Λ(1520) D 03 I( J P ) = 0( 3/2 − ) Mass m = ± 1.0 MeV [a]
Working Group on e-p Physics A. Bruell, E. Sichtermann, W. Vogelsang, C. Weiss Antje Bruell, JLab EIC meeting, Hampton, May Goals of this parallel.
Study of two pion channel from photoproduction on the deuteron Lewis Graham Proposal Phys 745 Class May 6, 2009.
Parity Violation in Electron Scattering Emlyn Hughes SLAC DOE Review June 2, 2004 *SLAC E122 *SLAC E158 *FUTURE.
PN12 Workshop JLab, Nov 2004 R. Michaels Jefferson Lab Parity Violating Neutron Densities Z of Weak Interaction : Clean Probe Couples Mainly to Neutrons.
PST05 Workshop, Nov 14-17, 2005 M. Farkhondeh 1 Polarized Electron Sources for Future Electron Ion Colliders M. Farkhondeh, Bill Franklin and E. Tsentalovich.
Experiment HUGS 2011 – Jefferson Laboratory Hussein Al Ghoul Department Of Physics Florida State University ᵠ.
The PEPPo e - & e + polarization measurements E. Fanchini On behalf of the PEPPo collaboration POSIPOL 2012 Zeuthen 4-6 September E. Fanchini -Posipol.
March 2011Particle and Nuclear Physics,1 Experimental tools accelerators particle interactions with matter detectors.
Polarisation transfer in hyperon photoproduction near threshold Tom Jude D I Glazier, D P Watts The University of Edinburgh.
18 th International Spin Physics Symposium Polarized Beams at EIC V. Ptitsyn.
Tools for Nuclear & Particle Physics Experimental Background.
Thomas Roser EIC collaboration workshop MIT, April 6, 2007 eRHIC Design eRHIC Schemes R&D Items Cost and Schedule.
The GlueX Detector 5/29/091CIPANP The GlueX Detector -- David Lawrence (JLab) David Lawrence (JLab) Electron beam accelerator continuous-wave (1497MHz,
25/07/2002G.Unal, ICHEP02 Amsterdam1 Final measurement of  ’/  by NA48 Direct CP violation in neutral kaon decays History of the  ’/  measurement by.
Polarimetry at the LC Source Which type of polarimetry, at which energies for LC ? Sabine Riemann (DESY), LEPOL Group International Workshop on Linear.
Scintillation hodoscope with SiPM readout for the CLAS detector S. Stepanyan (JLAB) IEEE conference, Dresden, October 21, 2008.
POETIC 2012 Indiana University R. D. McKeown 12 GeV CEBAF.
Hadron physics Hadron physics Challenges and Achievements Mikhail Bashkanov University of Edinburgh UK Nuclear Physics Summer School I.
Compton polarimetry for EIC Jefferson Lab Compton Polarimeters.
Normalization of the NPDGamma Experimental Data F. Simmons, C. Crawford University of Kentucky, for the NPDGamma collaboration Background: NPDγ Experiment.
Lead Fluoride Calorimeter for Deeply Virtual Compton Scattering in Hall A Alexandre Camsonne Hall A Jefferson Laboratory October 31 st 2008.
Operated by the Southeastern Universities Research Association for the U.S. Depart. Of Energy Thomas Jefferson National Accelerator Facility Lia Merminga.
Sub-Nucleon Physics Programme Current Status & Outlook for Hadron Physics D G Ireland.
May 17, 2006Sebastian Baunack, PAVI06 The Parity Violation A4 Experiment at forward and backward angles Strange Form Factors The Mainz A4 Experiment Result.
UMass Amherst Christine Aidala Jacksonville, FL Measuring the Gluon Helicity Distribution at a Polarized Electron-Proton Collider APS April Meeting 2007.
Latifa Elouadrhiri Jefferson Lab Hall B 12 GeV Upgrade Drift Chamber Review Jefferson Lab March 6- 8, 2007 CLAS12 Drift Chambers Simulation and Event Reconstruction.
BES-III Workshop Oct.2001,Beijing The BESIII Luminosity Monitor High Energy Physics Group Dept. of Modern Physics,USTC P.O.Box 4 Hefei,
ERHIC with Self-Polarizing Electron Ring V.Ptitsyn, J.Kewisch, B.Parker, S.Peggs, D.Trbojevic, BNL, USA D.E.Berkaev, I.A.Koop, A.V.Otboev, Yu.M.Shatunov,
Dihadron production at JLab Sergio Anefalos Pereira (INFN - Frascati)
CEBAF The Continuous Electron Beam Accelerating Facility (CEBAF) at JLab in Newport News, Virginia, is used to study the properties of quark matter. CEBAF.
Lecture 9: Inelastic Scattering and Excited States 2/10/2003 Inelastic scattering refers to the process in which energy is transferred to the target,
SLAC, September 25, 2009 Searching for a U -boson with a positron beam Bogdan Wojtsekhowski Thomas Jefferson National Accelerator Facility  The light.
Fiducial Cuts for the CLAS E5 Data Set K. Greenholt (G.P. Gilfoyle) Department of Physics University of Richmond, Virginia Goal: To generate electron fiducial.
Calorimetry for Deeply Virtual Compton Scattering in Hall A Alexandre Camsonne Hall A Jefferson Laboratory Workshop on General Purpose High Resolution.
Thomas Roser EIC AC meeting November 3-4, 2009 EIC Accelerator R&D Strategy and Programs Thomas Roser/Andrew Hutton BNL / Jefferson Lab R&D program is.
Compton polarimetry for EIC. Outline Polarized electron beam Compton process Compton polarimeters at Jefferson Laboratory – Parity experiments at Jlab.
HLAB meeting paper 2011/1/18 T.Gogami CLAS ( CEBAF Large Acceptance Spectrometer ) Clam shell is open.
The GlueX Detector in Hall-D at Jefferson Lab February 16, 2010 David Lawrence, Jefferson Lab (for Curtis A. Meyer, Carnegie Mellon University) July 7,
J-PARC でのハイパー核ガンマ線分光実験用 散乱粒子磁気スペクトロメータ検出器の準備 状況 東北大理, 岐阜大教 A, KEK B 白鳥昂太郎, 田村裕和, 鵜養美冬 A, 石元茂 B, 大谷友和, 小池武志, 佐藤美沙子, 千賀信幸, 細見健二, 馬越, 三輪浩司, 山本剛史, 他 Hyperball-J.
CP violation in B decays: prospects for LHCb Werner Ruckstuhl, NIKHEF, 3 July 1998.
1 Experimental Particle Physics PHYS6011 Fergus Wilson, RAL 1.Introduction & Accelerators 2.Particle Interactions and Detectors (2) 3.Collider Experiments.
Proposal for the End Station Test Beam (ESTB) at SLAC John Jaros ALCPG09 Albuquerque September 30, 2009.
Thomas Jefferson National Accelerator Facility Operated by the Southeastern Universities Research Association for the U.S. Depart. Of Energy The Department.
Fiducial Cuts for the CLAS E5 Data Set K. Greenholt (G.P. Gilfoyle) Department of Physics University of Richmond, Virginia INTRODUCTION The purpose of.
BINP tau charm plans and other projects in Turkey/China A. Bogomyagkov BINP SB RAS, Novosibirsk.
Explore the new QCD frontier: strong color fields in nuclei
Plans for nucleon structure studies at PANDA
eRHIC with Self-Polarizing Electron Ring
Precision Measurement of η Radiative Decay Width via Primakoff Effect
CASA Collider Design Review Retreat Other Electron-Ion Colliders: eRHIC, ENC & LHeC Yuhong Zhang February 24, 2010.
Preparation of the CLAS12 First Experiment Status and Time-Line
Other issues and concepts under study Conclusions References
Polarized Positrons at Jefferson Lab
Experimental Particle Physics PHYS6011 Putting it all together Lecture 4 28th April 2008 Fergus Wilson. RAL.
ACCELERATORS AND DETECTORS
Experimental Particle Physics PHYS6011 Joel Goldstein, RAL
Physics Plans for CEBAF at 12 GeV
IR/MDI requirements for the EIC
Presentation transcript:

Thomas Jefferson National Accelerator Facility BAM, Gordon Conference Experimental Techniques Where do we come from, where are we going? Bernhard A. Mecking Jefferson Lab Gordon Conference on Photonuclear Reactions August 1 - 6, 2004

Thomas Jefferson National Accelerator Facility BAM, Gordon Conference Topics Beams Targets Detectors Electronics + DAQ New facilities Trends I apologize in advance to everybody whose favorite topic I have left out.

Thomas Jefferson National Accelerator Facility BAM, Gordon Conference Technical Progress and Discovery Intimate connection between establishing a new technical capability and a quantum leap in understanding General field tightly coupled to advances in vacuum and surface technology, RF, electronics and computing, beam dynamics, simulation Specific Examples deep-inelastic scattering scaling quarks) e + e - collisions + large acceptance coverageJ/Psi (October 1974) polarized beam and targetnucleon spin structure precise data for  N  Ntests of Chiral PT polarization + Rosenbluth data for G e p /G m p importance of 2  effects? investigation of KN final statespenta-quark?

Thomas Jefferson National Accelerator Facility BAM, Gordon Conference Experiment Schematics Accelerator target (polarized) Source (pol.) Data conversion modules Data acquisition and storage Detector beam

Thomas Jefferson National Accelerator Facility BAM, Gordon Conference Electron Accelerators History linear accelerators (HEPL Mark III 1 GeV in 1950, SLAC 20 GeV in 1967, Saclay, MIT, NIKHEF) synchrotrons (Bonn 0.5 and 2.5 GeV, Daresbury, DESY 6 GeV) common features: pulsed RF or changing magnetic field, limits duty-cycle and beam quality Present status 100% duty-cycle operation using low-gradient warm accelerator structures + many passes (MAMI) superconducting accelerator structures + few passes (CEBAF) Future developments higher gradients for e + e - colliders (cost, not duty-cycle important) energy recovery for FEL, synchrotron light sources, electron beam cooling, etc. own community: MAMI C, CEBAF 12 GeV upgrade electron-ion collider

Thomas Jefferson National Accelerator Facility BAM, Gordon Conference MAMI Microtron 3. Stage

Thomas Jefferson National Accelerator Facility BAM, Gordon Conference CEBAF Continuous Electron Beam Accelerator Facility accelerating structures CHL RF separators Properties E max 5.8 GeV I max 200  A P e 85% beams 3 recirculating arcs

Thomas Jefferson National Accelerator Facility BAM, Gordon Conference  E/E x Electron Accelerator Beam Quality Beam Profile in Hall B obtained with dual wire scanner 10nA to Hall B, 100  A to Hall A Beam Energy Spread in Hall A Line synchrotron light interference monitor continuous non-destructive measurement  = 130  m

Thomas Jefferson National Accelerator Facility BAM, Gordon Conference Electron Accelerators History linear accelerators (HEPL Mark III 1 GeV in 1950, SLAC 20 GeV in 1967, Saclay, MIT, NIKHEF) synchrotrons (Bonn 0.5 and 2.5 GeV, DESY 6 GeV) common features: pulsed RF or changing magnetic field, limits duty-cycle and beam quality Present status 100% duty-cycle operation using low-gradient warm accelerator structures + many passes (MAMI) superconducting accelerator structures + few passes (CEBAF) Future developments high gradients for e + e - colliders (cost, not duty-cycle important) energy recovery for FEL, synchrotron light sources, electron beam cooling, etc. own community: MAMI C, CEBAF 12 GeV upgrade electron-ion collider?

Thomas Jefferson National Accelerator Facility BAM, Gordon Conference Polarized Electron Sources History 1977: first parity violation experiment at SLAC (e D e’X, DIS) GaAs photocathode, dye laser, P e ~37% (theoretical max. of 50%) rapid polarization reversal via Pockels cell experimental asymmetry ~ (syst. errors 10x smaller) Present status same technique strained GaAs or super-lattice, RF pulsed Ti-sapphire laser, P e ~85% systematic errors < (E158 at SLAC) polarization measurement at ~ 1% level (Moller and Compton scattering) Future Developments modest push for higher polarization smaller systematic errors higher current (many mA required for linac-ring collider)

Thomas Jefferson National Accelerator Facility BAM, Gordon Conference Photon Beams History bremsstrahlung beams (endpoint, endpoint difference) tagged bremsstrahlung (first use at Cornell 1953)

Thomas Jefferson National Accelerator Facility BAM, Gordon Conference First Use of Tagged Photon Beam fast (5 nsec) coincidence setup Hans Bethe Boyce McDaniel

Thomas Jefferson National Accelerator Facility BAM, Gordon Conference First Use of Tagged Photon Beam fast (5 nsec) coincidence setup Hans Bethe Boyce McDaniel

Thomas Jefferson National Accelerator Facility BAM, Gordon Conference Photon Beams History bremsstrahlung beams (endpoint, endpoint difference) tagged bremsstrahlung (first use at Cornell 1953) laser backscattering  + e  + e (benefiting from synchrotron light rings) Present status tagged bremsstrahlung routine with cw beam (MAMI, ELSA, CEBAF) photon flux /sec, limited by accidentals or low-energy background laser backscattering routine (HIGS, LEGS, GRAAL, high polarization at endpoint, tagging required, luminosity limited by parasitic operation Future developments tagged bremsstrahlung beam has reached full potential luminosity limitation in laser backscattering may be helped by continuous injection at full energy (ANL, SPring8)

Thomas Jefferson National Accelerator Facility BAM, Gordon Conference Laser Backscattering: GRAAL at ESRF fixed collimator tagging system interaction region variable collimator cleaning magnet ESRF 6 GeV e Laser hut laser Performance laser energy3.53 eV photon energy(550 – 1470) MeV resolution 16 MeV (FWHM) intensity /sec laser intensity, position, and polarization monitoring Be mirror laser optics

Thomas Jefferson National Accelerator Facility BAM, Gordon Conference HI  S Photon Source at TUNL Principle use DUKE 1.2 GeV FEL to produce UV laser light laser photons backscatter off subsequent electron bunch Present capabilities mostly <20 MeV operation due to lifetime considerations Future capabilities upgrade underway to allow for full-energy injection installation of OK-4 optical klystron (capable of producing up to 12 eV, mirrors?) maximum energy 200 MeV maximum flux 10 8 /sec energy definition via collimation (no tagging) injector 1.2 GeV Ring optical klystron

Thomas Jefferson National Accelerator Facility BAM, Gordon Conference dump Future Source of High-Energy Photons? Method collide laser light from FEL with electrons from single-turn light source Potential photon energy (with 12 eV laser) 2.4 GeV from 5 GeV ring 4.8 GeV from 8 GeV ring photon energy resolution <1% (collimation, no tagging) flux > 10 8 /sec SC linac e-gun FEL dump single-turn synchrotron light source

Thomas Jefferson National Accelerator Facility BAM, Gordon Conference H/D Polarized Targets Electron beams dynamically polarized target (NH 3, butanol) polarize free e at high field (~5T) and low T (~1K) use microwave transitions to transfer e polarization to H or D maximum luminosity L~ cm -2 s -1 (for polarized component) problems: nuclear background, magnet blocking acceptance

Thomas Jefferson National Accelerator Facility BAM, Gordon Conference Polarized Solid State Target for CLAS

Thomas Jefferson National Accelerator Facility BAM, Gordon Conference H/D Polarized Targets Electron beams dynamically polarized target (NH 3, butanol) polarize free e at high field (~5T) and low T (~1K) use microwave transitions to transfer e polarization to H or D maximum luminosity L~ cm -2 s -1 (for polarized component) problems: nuclear background, magnet blocking acceptance Photon beams (frozen spin target) 1.same substance, same polarizing technique but freeze spin at low T (50mK) and lower field (0.5T) small magnet coil (transparent to particles) 2.HD molecule, brute force polarization at 15T and 10mK potential advantage: lower dilution due to nuclear component (first success at LEGS, also in preparation for GRAAL)

Thomas Jefferson National Accelerator Facility BAM, Gordon Conference Setup for GDH experiment at MAMI tagged photon beam Bonn Frozen Spin Target

Thomas Jefferson National Accelerator Facility BAM, Gordon Conference Bonn Frozen Spin Target (GDH Experiment at MAMI) Butanol with porphyrexid (radiation doped) Butanol with titryl radical (chemically doped) Improvement of polarization of deuterated butanol during 2003 running period (based on detailed ESR studies of different materials at U. of Bochum)

Thomas Jefferson National Accelerator Facility BAM, Gordon Conference Polarized 3 He Targets Physics interests few-body structure good approximation for polarized free n (P n =87 % and P p =2.7 %), requires corrections for nuclear effects Standard technique: optical pumping of Rb vapor, followed by polarization transfer to 3 He through spin-exchange collisions target polarization measured by EPR/NMR Performance 40cm long target (10atm, I e =12  A) luminosity ~ cm -2 s -1 average polarization 42% Hall A 3 He target 25 Gauss Latest development: optical pumping of Rb/K mixture

Thomas Jefferson National Accelerator Facility BAM, Gordon Conference Particle Detection: Focusing Magnetic Spectrometers advantage high momentum resolution possible (due to point-to-point imaging from target _ > detector) detectors far away from target (behind magnetic channel) - insensitive to background - can operate at very high luminosity disadvantage coverage in solid angle and momentum range is limited examples 3-spectrometer setup at MAMI Hall A HRS at JLab

Thomas Jefferson National Accelerator Facility BAM, Gordon Conference MAMI 3-Spectrometer Setup ABC configurationQSDDD p max [MeV/c]  msr   min 18 7  p/p [%] all magnet coils resistive

Thomas Jefferson National Accelerator Facility BAM, Gordon Conference  msr  p/p10 -4  p/p10 -1 HRS 4GeV/c Spectrometer Pair in Hall A Q Q Q D beam target detector hut ‘optical bench’ all magnet coils super-conducting

Thomas Jefferson National Accelerator Facility BAM, Gordon Conference Particle Detection: Large Acceptance Detectors advantage: large coverage in solid angle and momentum range possible for - multi-particle final states - luminosity limited (photon tagging, polarized target) disadvantage: resolution and luminosity limited, large # of channels ($$) examples optimized for photon detection SASY (BNL LEGS) LAGRANGE (GRAAL) Crystal Barrel (ELSA) Crystal Ball (MAMI) optimized for charged particle detection HERMES (HERA) LEPS (SPring-8) CLAS (CEBAF)

Thomas Jefferson National Accelerator Facility BAM, Gordon Conference LAGRANGE at GRAAL Components 480 BGO crystals (21X o ) with PMT readout,  -coverage: 25 o o wire chambers for charged particle tracking forward TOF and photon detection in lead/scintillator sandwich detector liquid hydrogen target lead/ scintillator sandwich BGO calorimeter scintillator barrel cylindrical wire chambers photon beam

Thomas Jefferson National Accelerator Facility BAM, Gordon Conference Crystal Barrel at ELSA CB: prior service at LEAR

Thomas Jefferson National Accelerator Facility BAM, Gordon Conference Crystal Ball - TAPS Combination Crystal Ball central detector 672 NaI crystals 80 MHz FADC electronics (collaboration with CMS) TAPS forward detector 528 BaF 2 crystals with veto counters particle ID via fast/slow scintillation light First experiments  + magnetic moment from  p p  o  rare  -decays CB: prior service at SPEAR, DORIS, BNL TAPS CB

Thomas Jefferson National Accelerator Facility BAM, Gordon Conference Crystal Ball at MAMI

Thomas Jefferson National Accelerator Facility BAM, Gordon Conference LEPS at SPring-8

Thomas Jefferson National Accelerator Facility BAM, Gordon Conference CLAS in Maintenance Position Operating conditions (e-scattering luminosity10 34 cm -2 s -1 hadronic rate10 6 /sec Moller e rate10 9 /sec e-triggerCer. + calorimeter event size5 kBytes trigger rate4,000/sec data transfer rate20 Mbytes/sec

Thomas Jefferson National Accelerator Facility BAM, Gordon Conference Electronic Instrumentation History 1950’s: modules in crates; lab (CalTech) or proprietary company (EG&G) standards 1960’s: NIM standard (mechanical and electrical, no bus specified) 1970’s: CAMAC standard (bus system, limited success for industrial control) 1978: FASTBUS standard (high channel density, no industrial use) 1981: VME standard (flexible, many industrial applications) Trends number of industrial suppliers going down reasons: custom solutions needed for high-density on-detector electronics large size collaborations (e.g. LHC) have enough expertise large projects provide financial incentive for detector-specific developments

Thomas Jefferson National Accelerator Facility BAM, Gordon Conference How to handle 1000 events per second?? Data Acquisition (a personal experience) Tagged photon beam operation at the Bonn 500 MeV Synchrotron timemid 1970’s duty-cycle3% bunch separation6 nsec tagged beam intensity10 5 /sec magnetic spectrometer  100 msr data rate1/10 sec on-line computerNova memory (16 bit) 32kB core clock speed 1.5 MHz Improvement factors expected 100% duty-cycle 30 2 nsec bunch separation 3 4  spectrometer100 overall 10, MeV Synchrotron 20-channel Internal tagging system radiator magnetic spectrometer B

Thomas Jefferson National Accelerator Facility BAM, Gordon Conference Development of Raw Data Volume source: Ian Bird ‘Moore’s law’ for CPU power GByte/year,,,,,

Thomas Jefferson National Accelerator Facility BAM, Gordon Conference New Facilities HI  S MAMI Upgrade CEBAF 12 GeV Upgrade e-ion Collider

Thomas Jefferson National Accelerator Facility BAM, Gordon Conference MAMI Upgrade Program 1.add double-sided microton HDSM to increase energy to 1.5 GeV first beam in add experimental equipment Crystal Ball Kaon Spectrometer

Thomas Jefferson National Accelerator Facility BAM, Gordon Conference GeV CEBAFCHL-2 Upgrade magnets and power supplies 12 add Hall D (and beam line) Upgrade Experimental Equipment Glue-X detector in new Hall D MAD spectrometer in Hall A upgraded CLAS in Hall B SHMS spectrometer in Hall C Properties E max 12 GeV I max 80  A beams 3

Thomas Jefferson National Accelerator Facility BAM, Gordon Conference Hall D: GlueX Detector forward drift chambers lead-glass calorimeter forward time-of-flight Cerenkov cylindrical drift chambers Target vertex detector 2 meters barrel calorimeter + central ToF SC solenoid (LASS, MEGA) tagged photon beam

Thomas Jefferson National Accelerator Facility BAM, Gordon Conference M edium A cceptance D evice Spectrometer in Hall A Properties  30 msr Pmax 7 GeV/c  p/p 30%  p/p Technology 2 SC magnets 120cm circular aperture cos  cos  windings 6 Tesla max. field HRS MAD D+Q target support structure detector package

Thomas Jefferson National Accelerator Facility BAM, Gordon Conference Upgraded CLAS (CLAS ++ ) Forward TOF Preshower EC Forward EC Forward Cerenkov Forward DC Inner Cerenkov Central Detector Coil Calorimeter Torus Cold Ring

Thomas Jefferson National Accelerator Facility BAM, Gordon Conference Future Facility: Electron-Ion Collider? Physics motivation study processes at high c.m.s energy and low x ~10 -(3-4) especially gluon distribution functions Technical challenges high luminosity (high bunch charge, electron beam cooling) polarization control for both beams Technical approaches eRHIC add 10 GeV e-ring to 250 GeV RHIC, L~10 33 cm -2 s -1 ELIC add GeV p-ring to 3-7 GeV single-turn CEBAF, L~ cm -2 s -1 could also recirculate 5 GeV to get 25 GeV for fixed target experiments

Thomas Jefferson National Accelerator Facility BAM, Gordon Conference Ion Linac and pre - booster IR Beam Dump Snake CEBAF with Energy Recovery 3-7 GeVelectrons GeV light ions Solenoid - booster IR Beam Dump Snake CEBAF with Energy Recovery 3-7 GeVelectrons GeV light ions Solenoid - IR Beam dump Snake CEBAF with Energy Recovery 3-7 GeV electrons GeV light ions Solenoid Electron Injector Electron cooling ELIC Electron-Light Ion Collider Layout from Lia Merminga at EIC Workshop, JLab 03/15/2004 Ion linac and pre-booster

Thomas Jefferson National Accelerator Facility BAM, Gordon Conference Future Trends Experiments: coverage, polarization observables, accuracy Accelerators: energy, helicity correlated effects, dedicated collider? Detectors focusing magnetic spectrometers:energy, acceptance, resolution large acceptance spectrometers: luminosity balance between charged and neutrals cooperation with HEP Electronics/DAQ local intelligence DAQ rates on-line analysis