MANU2: status report 2004-05 Maria Ribeiro Gomes* for the Genoa Group IAP, 14-Nov-05 * pos-doc under TRN HPRN-CT-2002-00322.

Slides:



Advertisements
Similar presentations
X-Ray Astronomy Lab X-rays Why look for X-rays? –High temperatures –Atomic lines –Non-thermal processes X-ray detectors X-ray telescopes The Lab.
Advertisements

Recent progress with TES microcalorimeters and signal multiplexing J. Ullom NIST NASA GSFC SRON J. Beall R. Doriese W. Duncan L. Ferreira G. Hilton R.
Atomic Emission Spectroscopy
LTD12, Paris Microstructured magnetic calorimeter with meander shaped pickup coil A. Burck S. Kempf, S. Schäfer, H. Rotzinger, M. Rodrigues, T. Wolf, A.
1 Chapter 6 Low-Noise Design Methodology. 2 Low-noise design from the system designer’s viewpoint is concerned with the following problem: Given a sensor.
Electrical Noise Wang C. Ng.
Background on GIMM studies in HAPL Challenges for a final optic optical requirements environmental threats system integration Design choices Logic pursued.
GROWTH AND INVESTIGATION OF HALF-METALLIC Fe 3 O 4 THIN FILMS B. Vengalis, V. Lisauskas, A. Lisauskas, K.Šliužienė, V. Jasutis Semiconductor Physics Institute,
CCD-style imaging for the JCMT. SCUBA-2 technology  the ability to construct large format detector arrays  signal readouts that can be multiplexed To.
Ionization. Measuring Ions A beam of charged particles will ionize gas. –Particle energy E –Chamber area A An applied field will cause ions and electrons.
TES Bolometer Array with SQUID readout for Apex
Mid-IR photon counting array using HgCdTe APDs and the Medipix2 ROIC
X-Ray Spectroscopy. 1 eV 100 eV 10 eV Energy (keV) The need for high resolution X-ray spectroscopy Astrophysical Plasmas: Simulation of the emission from.
June X-Ray Spectroscopy with Microcalorimeters1 X-Ray Spectrometry with Microcalorimeters.
19 March 2005 LCWS 05 M. Breidenbach 1 SiD Electronic Concepts SLAC –D. Freytag –G. Haller –J. Deng –mb Oregon –J. Brau –R. Frey –D. Strom BNL –V. Radeka.

Thin Film Deposition Prof. Dr. Ir. Djoko Hartanto MSc
1 ME 381R Fall 2003 Micro-Nano Scale Thermal-Fluid Science and Technology Lecture 18: Introduction to MEMS Dr. Li Shi Department of Mechanical Engineering.
Daniele Pergolesi, Institut d’Astrophysique de Paris, Nov 14 th The MARE experiment on direct measurement of neutrino mass Daniele Pergolesi UNIVERSITY.
30. Nov I.Will, G. Klemz, Max Born Institute: Optical sampling system Optical sampling system for detailed measurement of the longitudinal pulse.
McGill Nanotools Microfabrication Processes
Preliminary Design of Calorimeter Electronics Shudi Gu June 2002.
Photon detection Visible or near-visible wavelengths
LEKIDs effort in Italy Martino Calvo B-Pol workshop, IAP Paris, July.
Performance test of STS demonstrators Anton Lymanets 15 th CBM collaboration meeting, April 12 th, 2010.
Development of Low Temperature Detector S.C. Kim (SNU, DMRC)
Rome, January 17th,2006 Flavio Gatti WHIM and Mission Opportunities TES microcalorimeters in the European context Flavio Gatti University and INFN, Genoa.
Development of a Low Noise Preamplifier for the LEM read-out
ConX – XEUS meeting Panu Helistö, Mikko Kiviranta Utrecht,
Silicon  -Calorimeters at Saclay Main Architecture: All-Si STANDARD Technologies including collective approach for large (1024 pixels) buttable X-rays.
Silicon Sensor with Readout ASICs for EXAFS Spectroscopy Gianluigi De Geronimo, Paul O’Connor Microelectronics Group, Instrumentation Division, Brookhaven.
T. Frank for the CRESST collaboration Laboratori Nazionali del Gran Sasso C. Bucci Max-Planck-Institut für Physik M. Altmann, M. Bruckmayer, C. Cozzini,
AlGaN/InGaN Photocathodes D.J. Leopold and J.H. Buckley Washington University St. Louis, Missouri, U.S.A. Large Area Picosecond Photodetector Development.
Recent Progress in Silicon Microcalorimeters and Their Prospects for NeXT (and other missions) Caroline A. Kilbourne NASA Goddard Space Flight Center.
Large Area Microcalorimeters of the Diffuse X-ray Background Sarah Bank Towson University August 5, 2004.
The MPPC Study for the GLD Calorimeter Readout Introduction Measurement of basic characteristics –Gain, Noise Rate, Cross-talk Measurement of uniformity.
PADI status Mircea Ciobanu 11 th CBM Collaboration Meeting February 26-29, 2007, GSI FEE1 PADI.
Fabrication of oxide nanostructure using Sidewall Growth 田中研 M1 尾野篤志.
Fully depleted MAPS: Pegasus and MIMOSA 33 Maciej Kachel, Wojciech Duliński PICSEL group, IPHC Strasbourg 1 For low energy X-ray applications.
The AGIPD Detector for the European XFEL Julian Becker (DESY), Roberto Dinapoli (PSI), Peter Goettlicher (DESY), Heinz Graafsma (DESY), Dominic Greiffenberg.
NANO 225 Micro/NanoFabrication Electron Microscopes 1.
Electrical characterization of a superconducting hot spot microbolometer S.Cibella, R. Leoni, G. Torrioli, M. G. Castellano, A. Coppa, F. Mattioli IFN-CNR,
Reminders Quiz#2 and meet Alissa and Mine on Wednesday –Quiz covers Bonding, 0-D, 1-D, 2-D, Lab #2 –Multiple choice, short answer, long answer (graphical.
Metallic magnetic calorimeters (MMC) for high resolution x-ray spectroscopy Loredana GASTALDO, Markus LINCK, Sönke SCHÄFER, Hannes ROTZINGER, Andreas BURCK,
Optimization of Detectors for Time of Flight PET Marek Moszyński, Tomasz Szczęśniak, Soltan Institute for Nuclear Studies, Otwock-Świerk, Poland.
C03 High speed photon number resolving detector with titanium transition edge sensors Daiji Fukuda, Go Fujii, R.M.T. Damayanthi, Akio Yoshizawa, Hidemi.
Min Kyu Lee ( 이민규 ) Kyoung Beom Lee ( 이경범 ) Yong-Hamb Kim ( 김용함 ) Low Temperature Detectors 2006 Workshop on the Underground Experiment at Yangyang TEXONO-KIMS.
Page 1 Science Payload and Advanced Concepts Office STJs as Photon Detectors.
Characterization of noise and transition shapes in superconducting transition-edge sensors using a pulsed laser diode Dan Swetz Quantum Sensors Group NIST.
Metallic Magnetic Calorimeters for High-Resolution X-ray Spectroscopy D. Hengstler, C. Pies, S. Schäfer, S. Kempf, M. Krantz, L. Gamer, J. Geist, A. Pabinger,
Lecture 3-Building a Detector (cont’d) George K. Parks Space Sciences Laboratory UC Berkeley, Berkeley, CA.
Yong-Hamb Kim Low Temperature Detectors for Rare Event Search 2 nd Korea-China Joint Seminar on Dark Matter Search.
Performance of new MPPC Nov. 21 Korea-Japan joint meeting Takashi Maeda Hideki Yamazaki Yuji Sudo (University of Tsukuba) --- Contents ---
CVD Diamond Sensors for the Very Forward Calorimeter of a Linear Collider Detector K. Afanaciev, E. Kouznetsova, W. Lange, W. Lohmann.
MARE Microcalorimeter Arrays for a Rhenium Experiment A DETECTOR OVERVIEW Andrea Giuliani, University of Insubria, Como, and INFN Milano on behalf of the.
February 17-18, 2010 R&D ERL Brian Sheehy R&D ERL Laser and laser light transport Brian Sheehy February 17-18, 2010 Laser and Laser Light Transport.
CERN PH MIC group P. Jarron 07 November 06 GIGATRACKER Meeting Gigatracker Front end based on ultra fast NINO circuit P. Jarron, G. Anelli, F. Anghinolfi,
Conclusions References 1. A. Galimberti et al., Nucl. Instrum. Meth. A 477, (2002). 2. F. Capotondi et al., Thin Solid Films 484, (2005).
Mar 24 th, 2016 Inorganic Material Chemistry. Gas phase physical deposition 1.Sputtering deposition 2.Evaporation 3.Plasma deposition.
1 MARE Direct determination of neutrino mass with Low Temperature Microcalorimeters Flavio Gatti University and INFN of Genoa CSNII, 29 Sept 2009.
Recent progress in ultra-low noise, ultra-low background detectors V. Marian, M.O. Lampert, B. Pirard, P. Quirin CANBERRA France (Lingolsheim) Workshop.
STATUS OF R&D AT UCSB Paul Szypryt Mazin Lab August 26, 2013.
Scintillating Bolometers – Rejection of background due to standard two-neutrino double beta decay D.M. Chernyak 1,2, F.A. Danevich 2, A. Giuliani 1, M.
Protective Coatings against Liquid Metal Embrittlement Protective Coatings against Liquid Metal Embrittlement.
Yong-Hamb Kim Development of cryogenic CaMoO 4 detector 2nd International Workshop on double beta decay search Oct. 7~ Oct. 8, 2010.
Current status of R&D on MMC and TES and a full size crystal test setup Sang-jun Lee Seoul National University.
Microwave SQUID multiplexer for the readout of large MMC arrays
Irina Bavykina, MPI f. Physik
BESIII EMC electronics
MARE (microcalorimeter array for a rhenium experiment)
Presentation transcript:

MANU2: status report Maria Ribeiro Gomes* for the Genoa Group IAP, 14-Nov-05 * pos-doc under TRN HPRN-CT

Objectives Micro-calorimetric neutrino mass direct measurement Investigate Re-187 beta 1 eV/c 2 region Requirements Stable TES sensors (Ir-Au or  Al-Ag) Required energy resolution 5-10 eV 6 keV no-SQUID readout electronics 300  calorimeters with Re single crystal absorber Second generation experiment IAP, 14-Nov-05

TES R&D -Stable SC intermetallic alloy (instead of bilayer) -SC  -phase from phase diagram IAP, 14-Nov-05 Al-Ag alloy X-ray diffraction pattern from film growth by e-beam evaporation of Al and Ag onto Si(110) substrate T C of the alloy depends on the material stoichoimetry: mK Advantages: Easy preparation Freedom on T C choice Shorter pulse

TES R&D (cont.) Ir-Au multilayer Stable/reproducible performance PLD on Si substrate and subsequently patterned by ion sputtering Ir-Au-Ir on Si Photo-resist pattern Ar ion-etching Final result Pulsed Laser Deposition Laser frequency: 2-10 Hz Starting pressure: 6.5 × 10 −9 mbar Plasma pressure: 1.2 × 10 −7 mbar Substrate temperature: 350 o C Laser energy: 500 mJ/pulse Ablation rate: 0.1 – 0.4 Å/shot IAP, 14-Nov-05 balance Linear sample feed-through laser

Au target Sample holder Si substrate wafer Laser beam Nd:YAG 1064 nm Plasma plume Target carrousel Ir target

S-N phase transition i=0.4mA R=200 m 82.9 mK  =T/R (  R/  T) ~ 9100 Ir-Au TES IAP, 14-Nov-05

Detector performance comparison Calorimeter Sensor  c#18 Ge-NTD  c#28  c#31  c#35  c#55 Ir-Au TES Re (  g) C Re (pJ/K) C sensor (pJ/K) R sensor (  ) 4.9M6.0M7.8M6.6M1 V noise (mV) cal Baseline noise (mV) 4.5(.2)4.05.4(.2)4.6(.2)650 pA  E(eV) cal. keV  E(eV) meas. keV IAP, 14-Nov-05

Transformer readout electronics Trans-resistance amplifier coupled via transformer Low temperature operating transformer (100 mK) Transformer core material selected over:  -metal, ferrite, metallic amorphous, spin glasses Low noise RT JFET amplifier: present noise 0.9 nV/√Hz Integrating stage in order to flat the transfer function IAP, 14-Nov-05 5pf 270pf 1K R b = H 5H 3.6H ∫ 1.6

Cold transformer and bias circuit Measured noise: 14 1 kHz, < kHz There is space of parameters for optimal matching: I(thermal noise)=√ (4kT 2 aI/G eq ) ~ T √ (4k) √(a/R) Signal to noise is proportional to √R Setting a proper value of the TES resistance it possible move the current equivalent thermal noise to level in the range of the current equivalent electronics input noise a= K -1, R=1W-> I(thermal noise) ~ pA/√Hz Further improvement can be done with new JFET (0.3 nV/Hz, 10 fA/Hz) and a slight higher mutual inductance transformer Further improvement can be done with new JFET (0.3 nV/ √ Hz, 10 fA/ √ Hz) and a slight higher mutual inductance transformer IAP, 14-Nov-05

Input Current transformer V out Integrated Output Transfer function IAP, 14-Nov-05

Single pixel results Ir-Au TES on high-purity Si 70 mK Re crystal absorber with (400x470x54)  m 3  0.2 decay/s Tested bandwidth (1-1000) Hz and readout by DC-SQUID pulse-height=2560 mV rise time 160  s pileup discrimination time 80  s RMS noise 1.2 mV Energy resolution at 6 keV IAP, 14-Nov-05

Statistical Sensitivity IAP, 14-Nov-05 MANU MANU2

Under progress… testing 1 single disc: 20 readout channels 16 mg  3 months  1.2 x 10 8 counts 200 channels in measurement by Mars 2006 In 1 yr of data taking 9x10 9 counts (MANU: single 1.5 mg Re crystal, Ge-NTD sensor and 3 months  7x10 6 counts ) Number of channels ~ 300 Total Re mass ~ 250 mg Expected count-rate ~ 300 counts/s Expected sensitivity between 1.5 and 1.7 eV IAP, 14-Nov  m/disc 10 discs  180