MEG positron spectrometer Oleg Kiselev, PSI on behalf of MEG collaboration.

Slides:



Advertisements
Similar presentations
NDVCS measurement with BoNuS RTPC M. Osipenko December 2, 2009, CLAS12 Central Detector Collaboration meeting.
Advertisements

MEG 1  e  search at PSI: SUGRA indications SUSY SU(5) predictions BR (  e  )   SUSY SO(10) predictions BR SO(10)  100 BR SU(5) R.
Tagger Electronics Part 1: tagger focal plane microscope Part 2: tagger fixed array Part 3: trigger and digitization Richard Jones, University of Connecticut.
MICE: The International Muon Ionization Cooling Experiment Diagnostic Systems Tracker Cherenkov Detector Time of Flight Counters Calorimeter Terry Hart.
MEG 実験 陽電子スペクトロメータの 性能と今後の展望 Yuki Fujii On behalf of the MEG collaboration JPS Hirosaki University 17 th Sep /9/17 日本物理学会@弘前大学 1.
Yasuhiro NISHIMURA Hiroaki NATORI The University of Tokyo MEG collaboration Outline  → e  and MEG experiment Design of detector Calibration Performance.
The Time-of-Flight system of the PAMELA experiment: in-flight performances. Rita Carbone INFN and University of Napoli RICAP ’07, Rome,
Upgrade of liquid xenon gamma-ray detector in MEG experiment Daisuke Kaneko, the University of Tokyo, on behalf of the MEG collaboration MEG EXPERIMENT.
The Transverse detector is made of an array of 256 scintillating fibers coupled to Avalanche PhotoDiodes (APD). The small size of the fibers (5X5mm) results.
Malte HildebrandtMEG Review Meeting, 14th February 2007 Report of Run Coordinator Run 2006 Summary Malte Hildebrandt MEG Review Meeting, 14th February.
Mar Toshiyuki Iwamoto (ICEPP) JPS 2010 Spring meeting, Okayama University1 MEG 実験による   e  探索 Run2009 東京大学素粒子物理国際研究センター 岩本敏幸 他 MEG コラボレーション.
The PEPPo e - & e + polarization measurements E. Fanchini On behalf of the PEPPo collaboration POSIPOL 2012 Zeuthen 4-6 September E. Fanchini -Posipol.
Report of the NTPC Test Experiment in 2007Sep and Others Yohei Nakatsugawa.
 A GEANT4-based simulation was performed of the production target, solenoid, selection channel, and spectrometer.  The acceptance was found to be 8.3x10.
ハイパー核ガンマ線分光用 磁気スペクトロメータ -SksMinus- 東北大学 大学院理学研究科 白鳥昂太郎 ATAMI.
2 1/March/2015 日本物理学会大70回年次大会@早稲田大学 東大ICEPP 内山雄祐 他 MEG II collaboration.
OPERA Experiment, Brick Finding Program A. Chukanov Joint Institute for Nuclear Research ISU, 12 th February, 2007.
Setup for hypernuclear gamma-ray spectroscopy at J-PARC K.Shirotori Tohoku Univ. Japan for the Hyperball-J collaboration J-PARC E13 hypernuclear  -ray.
Scintillation hodoscope with SiPM readout for the CLAS detector S. Stepanyan (JLAB) IEEE conference, Dresden, October 21, 2008.
ICHEP 2012 Melbourne, 7 July 2012 Paul Soler on behalf of the MICE Collaboration The MICE Beam Line Instrumentation (Trackers and PID) for precise Emittance.
Status of the MEG Experiment  → e  On behalf of the MEG collaboration Stefan Ritt Paul Scherrer Institute, Switzerland.
MEG 2009 現状と展望 東京大学素粒子物理国際研究センター 岩本敏幸 他 MEG コラボレーション 日本物理学会 2009 年秋季大会 甲南大学岡本キャンパス.
1 MEG 陽電子タイミングカウンタの ビーム中での性能評価と 解析方法の研究 * 内山雄祐 東大素粒子セ, INFN-Genova A, INFN-Pavia B 森俊則 F. Gatti. A,S.Dussoni A,G.Boca B,P.W.Cattaneo B, 他 MEG Collaboration.
Malte Hildebrandt, PSIMEG - Review Meeting / 1   e  Drift Chambers Charge Division Test Chamber Testsetup for Cosmics Chamber Construction.
The DRS2 Chip: A 4.5 GHz Waveform Digitizing Chip for the MEG Experiment Stefan Ritt Paul Scherrer Institute, Switzerland.
Lead Fluoride Calorimeter for Deeply Virtual Compton Scattering in Hall A Alexandre Camsonne Hall A Jefferson Laboratory October 31 st 2008.
Dec. 8th, 2000NOON A new   e  experiment at PSI For the MUEGAMMA collaboration Stefan Ritt (Paul Scherrer Institute, Switzerland) Introduction.
The CMS detector as compared to ATLAS CMS Detector Description –Inner detector and comparison with ATLAS –EM detector and comparison with ATLAS –Calorimetric.
First Results from the NA62 Straw Spectrometer E uropean P hysical S ociety 2015, Wien Vito Palladino - CERN On Behalf of NA62 Collaboration.
Overview of the experiment Collaboration (about 30 physicists at this meeting) Budget Realistic schedule and general status (few words) of each sub-detector.
FSC Status and Plans Pavel Semenov IHEP, Protvino on behalf of the IHEP PANDA group PANDA Russia workshop, ITEP 27 April 2010.
Magnetized hadronic calorimeter and muon veto for the K +   +  experiment L. DiLella, May 25, 2004 Purpose:  Provide pion – muon separation (muon veto)
TYPE1 BOARD Type1 boards are compliant with 6U VME standard. Each board receives 16 analog signals from experimental devices. These signals are digitized.
J-PARC でのハイパー核ガンマ線分光実験用 散乱粒子磁気スペクトロメータ検出器の準備 状況 東北大理, 岐阜大教 A, KEK B 白鳥昂太郎, 田村裕和, 鵜養美冬 A, 石元茂 B, 大谷友和, 小池武志, 佐藤美沙子, 千賀信幸, 細見健二, 馬越, 三輪浩司, 山本剛史, 他 Hyperball-J.
1 Electronics Status Trigger and DAQ run successfully in RUN2006 for the first time Trigger communication to DRS boards via trigger bus Trigger firmware.
Harvard Neutrino Group DoE Review August 21, 2006.
CP violation in B decays: prospects for LHCb Werner Ruckstuhl, NIKHEF, 3 July 1998.
M. Garcia-Sciveres July 2002 ATLAS A Proton Collider Detector M. Garcia-Sciveres Lawrence Berkeley National Laboratory.
Particle Physics Experiments at PSI Stefan Ritt Paul Scherrer Institute, Switzerland.
OPERA Experiment, Brick Finding Program A. Chukanov Joint Institute for Nuclear Research Dubna, 25 th January, 2007.
The trigger-less TBit/s readout for the Mu3e experiment Dirk Wiedner On behalf of the Mu3e collaboration 24 Sep 20131Dirk Wiedner TWEPP2013.
J-PARC における 4  He の生成と構造の研究 東北大学 大学院理学研究科 白鳥昂太郎 for the Hyperball-J Collaboration.
The Lead Glass Detector Overview, Experience and Direction.
2008 European School of High-Energy Physics - Trest, Czech Republic - 19 August - 1st September Target Tracker Data Analysis In OPERA Experiment S. Dmitrievsky,
Upgrade of the MEG liquid xenon calorimeter with VUV-light sensitive large area SiPMs Kei Ieki for the MEG-II collaboration 1 II.
Development of UV-sensitive MPPC for upgrade of liquid xenon detector in MEG experiment Daisuke Kaneko, on behalf of the MEG Collaboration µ γ Liquid xenon.
Rita Carbone, RICAP 11, Roma 3 26/05/2011 Stand-alone low energy measurements of light nuclei from PAMELA Time-of-Flight system. Rita Carbone INFN Napoli.
A Novel Experiment Searching for the Lepton Flavor Violating Decay μ→eee Dirk Wiedner, Heidelberg On Behalf of the Mu3e Proto-Collaboration July 24 th.
Status and perspectives of the MEG Experiment Fabrizio Cei INFN & University of Pisa On behalf of the MEG Collaboration FCCP 2015 Workshop Capri,
g beam test of the Liquid Xe calorimeter for the MEG experiment
小川真治、 他MEG 第72回年次大会 MEG II 実験液体キセノンガンマ線検出器における取得データサイズ削減手法の開発 Development of the data size reduction method for MEG II liquid.
An Active TARget for MEG-II, a status report
Cecilia Voena INFN Roma on behalf of the MEG collaboration
Liquid Xenon Detector for the MEG Experiment
New experiment to search for mge g at PSI status and prospects
大強度
Upgrade of LXe gamma-ray detector in MEG experiment
Upgrade of LXe gamma-ray detector in MEG experiment
Upgrade of LXe gamma-ray detector in MEG experiment
Upgrade of LXe gamma-ray detector in MEG experiment
Upgrade of LXe gamma-ray detector in MEG experiment
MEG実験アップグレードに向けたSiPMを用いた ポジトロン時間測定器の研究開発
MEG実験の液体Xe検出器について 東大 ICEPP  森研究室 M1 金子大輔.
Stefan Ritt Paul Scherrer Institute, Switzerland
ACCELERATORS AND DETECTORS
MEG Summary T. Mori for MEG Collaboration February 9, 2005.
COherent Muon to Electron Transition (COMET)
Decay Angular Measurement in the MEG Experiment
New Results from the MEG Experiment
Gain measurements of Chromium GEM foils
Presentation transcript:

MEG positron spectrometer Oleg Kiselev, PSI on behalf of MEG collaboration

Motivations of the experiment   + → e +  decay is a forbidden process in the Standard Model (SM) – conservation of lepton numbers  In case of massive neutrinos and mixing – allowed on negligible level  In all SM extensions the branching ratio is enhanced, predictions are  – (Y. Kuno, Y. Okada, Rev. Mod. Phys. 73 (2001) 151)  Relatively simple process - e + and  should be emitted in the opposite directions with the same energy of 52.8 MeV  The main goal of the experiment is to reach a sensitivity of  two orders of magnitude lower than current limit

Signal and background Signal e +  +  Background  + → e +  e +  +   + → e + e + e + →   e e +  +  = 180  E  = E e = 52.8 MeV T  = T e Key features – intense DC muon beam; precise gamma energy measurement; precise positron energy measurement; precise time measurement

MEG setup 10 8 muons/sec Thin CH 2 target Liquid Xenon calorimeter (10% acceptance, 800 l, 846 PMTs,  t  60 ps,  E  1%, high light yield) Scintillation Timing Counter (  t  50 ps) COnstant Bending RAdius spectrometer inside superconducting magnet (B = 1.27 T at Z = 0 and decreasing as Z increases, B = 0.49 T at Z =1.25 m) Ultra low positron detection system

COBRA magnet Highly gradient field, 5 superconducting + 2 warm (compensation coils)

Advantage of the gradient field

Spectrometer - requirements Very high counting rate – up to 10 8 stopped muons Very high counting rate – up to 10 8 stopped muons Good momentum (  0.4%)  position (  300  m for r, z) & time resolution (  50 ps) Good momentum (  0.4%)  position (  300  m for r, z) & time resolution (  50 ps) Multiple scattering is a limiting factor &  -background should be suppressed  low mass system Multiple scattering is a limiting factor &  -background should be suppressed  low mass system

Layout of DCs Low mass – the most hard requirement → He-filled spectrometer, He-based gas mixture, no strong frames Opened-frame structure!

DC structure Two independent layers for resolving left-right ambiguity Drift field  4 kV/cm, drift velocity  4 cm/  sec anode readout Resolution  1 cm via charge division  0.3 cm via ratio of signals from two strips

DCH waveforms Full information about charge and time is recorded

Gas regulation Due to the 12  m foils and opened-frame structure a pressure regulation needs to be extremely precise dP  1 Pa,  P  0.1 Pa!

Timing counter Parameters: 2-layer structure – outer thick scintillation bars PMT readout for timing inner scintillation fibers APD readout for z-trigger Requirement of the experiment – 40 ps (  ) One of the best results!

MEG electronics Key feature - waveform digitizing of all signals  best pile-up rejection possibility Key feature - waveform digitizing of all signals  best pile-up rejection possibility Use of DRS2 and DRS3 FADC chips – 12 bit, 1.5 GHz for calorimeter, 500 MHz for DCHs Use of DRS2 and DRS3 FADC chips – 12 bit, 1.5 GHz for calorimeter, 500 MHz for DCHs Customized trigger system – FPGA perform a fast energy, time and position reconstruction; set of trigger criteria is programmed Customized trigger system – FPGA perform a fast energy, time and position reconstruction; set of trigger criteria is programmed Slow control with a connection to the MIDAS DAQ  logging of all important parameters Slow control with a connection to the MIDAS DAQ  logging of all important parameters Very high demands for processing power Very high data rate DRS4 – improved design, up to 5 GHz!

Status of experiment All components of MEG setup are operational and tested during a commissioning run in December 2007 All components of MEG setup are operational and tested during a commissioning run in December 2007 Unique feathers of the positron spectrometer should allow to reach the goal of the experiment Unique feathers of the positron spectrometer should allow to reach the goal of the experiment Start of data taking – July 2008 Start of data taking – July 2008

Paul Scherrer Institute J. Egger, M. Hildenbrandt, P.-R. Kettle, O. Kiselev, S. Ritt, M. Schneebeli