FEC and RDO in SVC Thomas Wiegand 1. Outline Introduction SVC Bit-Stream Raptor Codes Layer-Aware FEC Simulation Results Linear Signal Model Description.

Slides:



Advertisements
Similar presentations
Scalable Video Multicast Using Expanding Window Fountain Codes Dejan Vukobratovic´,Vladimir Stankovic´, Dino Sejdinovic´, Lina Stankovic´,Zixiang Xiong.
Advertisements

Introduction to H.264 / AVC Video Coding Standard Multimedia Systems Sharif University of Technology November 2008.
KIANOOSH MOKHTARIAN SCHOOL OF COMPUTING SCIENCE SIMON FRASER UNIVERSITY 6/24/2007 Overview of the Scalable Video Coding Extension of the H.264/AVC Standard.
MPEG4 Natural Video Coding Functionalities: –Coding of arbitrary shaped objects –Efficient compression of video and images over wide range of bit rates.
-1/20- MPEG 4, H.264 Compression Standards Presented by Dukhyun Chang
MPEG-4 Objective Standardize algorithms for audiovisual coding in multimedia applications allowing for Interactivity High compression Scalability of audio.
1 Video Coding Concept Kai-Chao Yang. 2 Video Sequence and Picture Video sequence Large amount of temporal redundancy Intra Picture/VOP/Slice (I-Picture)
SWE 423: Multimedia Systems
H.264/AVC Baseline Profile Decoder Complexity Analysis Michael Horowitz, Anthony Joch, Faouzi Kossentini, and Antti Hallapuro IEEE TRANSACTIONS ON CIRCUITS.
Li Liu, Robert Cohen, Huifang Sun, Anthony Vetro, Xinhua Zhuang BMSB
Ch. 6- H.264/AVC Part I (pp.160~199) Sheng-kai Lin
Overview of the Scalable Video Coding Extension of the H
SVC-Based Multisource Streaming for Robust Video Transmission in Mobile Ad-Hoc Networks Thomas Schierl, Karsten Ganger, Cornelius Hellge, and Thomas Wiegand.
Optimum Bit Allocation and Rate Control for H.264/AVC Wu Yuan, Shouxun Lin, Yongdong Zhang, Wen Yuan, and Haiyong Luo CSVT 2006.
Video Transmission Adopting Scalable Video Coding over Time- varying Networks Chun-Su Park, Nam-Hyeong Kim, Sang-Hee Park, Goo-Rak Kwon, and Sung-Jea Ko,
Reinventing Compression: The New Paradigm of Distributed Video Coding Bernd Girod Information Systems Laboratory Stanford University.
Overview on Scalable Video Coding - II Chuan-Yu Cho.
Rate-Distortion Optimized Layered Coding with Unequal Error Protection for Robust Internet Video Michael Gallant, Member, IEEE, and Faouzi Kossentini,
Overview of Fine Granularity Scalability in MPEG-4 Video Standard Weiping Li, Fellow, IEEE.
H.264 / MPEG-4 Part 10 Nimrod Peleg March 2003.
Scalable Wavelet Video Coding Using Aliasing- Reduced Hierarchical Motion Compensation Xuguang Yang, Member, IEEE, and Kannan Ramchandran, Member, IEEE.
Error Concealment For Fine Granularity Scalable Video Transmission Hua Cai; Guobin Shen; Feng Wu; Shipeng Li; Bing Zeng; Multimedia and Expo, Proceedings.
Communication & Multimedia C. -Y. Tsai 2005/8/17 1 MCTF in Current Scalable Video Coding Schemes Student: Chia-Yang Tsai Advisor: Prof. Hsueh-Ming Hang.
Error Resilience in a Generic Compressed Video Stream Transmitted over a Wireless Channel Muhammad Bilal
BY AMRUTA KULKARNI STUDENT ID : UNDER SUPERVISION OF DR. K.R. RAO Complexity Reduction Algorithm for Intra Mode Selection in H.264/AVC Video.
H.264/AVC for Wireless Applications Thomas Stockhammer, and Thomas Wiegand Institute for Communications Engineering, Munich University of Technology, Germany.
Distributed Video Coding VLBV, Sardinia, September 16, 2005 Bernd Girod Information Systems Laboratory Stanford University.
Error Resilience of Video Transmission By Rate-Distortion Optimization and Adaptive Packetization Yuxin Liu, Paul Salama and Edwad Delp ICME 2002.
09/24/02ICIP20021 Drift Management and Adaptive Bit Rate Allocation in Scalable Video Coding H. Yang, R. Zhang and K. Rose Signal Compression Lab ECE Department.
H.264/AVC.
An Introduction to H.264/AVC and 3D Video Coding.
1. 1. Problem Statement 2. Overview of H.264/AVC Scalable Extension I. Temporal Scalability II. Spatial Scalability III. Complexity Reduction 3. Previous.
MPEG-2 Digital Video Coding Standard
MPEG-2 Scalability Support Nimrod Peleg Update: Dec.2000.
Overview of the Scalable Video Coding Extension of the H.264/AVC Standard Kai-Chao Yang 12007/8Kai-Chao Yang, NTHU, Taiwan.
Heiko Schwarz, Detlev Marpe, and Thomas Wiegand CSVT, Sept. 2007
Kai-Chao Yang Hierarchical Prediction Structures in H.264/AVC.
-1/20- Scalable Video Coding Scalable Extension of H.264 / AVC.
Philipp Merkle, Aljoscha Smolic Karsten Müller, Thomas Wiegand CSVT 2007.
Farid Molazem Network Systems Lab Simon Fraser University Scalable Video Transmission for MobileTV.
Electrical Engineering National Central University Video-Audio Processing Laboratory Data Error in (Networked) Video M.K.Tsai 04 / 08 / 2003.
 Coding efficiency/Compression ratio:  The loss of information or distortion measure:
MPEG-1 and MPEG-2 Digital Video Coding Standards Author: Thomas Sikora Presenter: Chaojun Liang.
Low Bit Rate H Video Coding: Efficiency, Scalability and Error Resilience Faouzi Kossentini Signal Processing and Multimedia Group Department of.
Outline JVT/H.26L: History, Goals, Applications, Structure
PERSONAL TELEPRESENCE USING SCALABLE VIDEO CODING Alex Eleftheriadis, Chief Scientist
Videos Mei-Chen Yeh. Outline Video representation Basic video compression concepts – Motion estimation and compensation Some slides are modified from.
Adaptive Multi-path Prediction for Error Resilient H.264 Coding Xiaosong Zhou, C.-C. Jay Kuo University of Southern California Multimedia Signal Processing.
Codec structuretMyn1 Codec structure In an MPEG system, the DCT and motion- compensated interframe prediction are combined. The coder subtracts the motion-compensated.
Power saving control for the mobile DVB-H receivers based on H.264/SVC standard Eugeny Belyaev, Vitaly Grinko, Ann Ukhanova Saint-Petersburg State University.
Marc CHAUMONT ICIP 2003 Fully scalable object based video coder based on analysis- synthesis scheme Marc Chaumont, Nathalie Cammas 1 and Stéphane Pateux.
報告人:林祐沁 學生 指導教授:童曉儒 老師 March 2, Wireless Video Surveillance Server Based on CDMA1x and H.264.
Rate-distortion Optimized Mode Selection Based on Multi-channel Realizations Markus Gärtner Davide Bertozzi Classroom Presentation 13 th March 2001.
MPEG-4: Multimedia Coding Standard Supporting Mobile Multimedia System -MPEG-4 Natural Video Coding April, 2001.
Video Coding Using Spatially Varying Transform Cixun Zhang, Kermal Ugur, Jani Lainema, Antti Hallapuro and Moncef IEEE TRANSACTIONS ON CIRCUITS AND SYSTEM.
High-efficiency video coding: tools and complexity Oct
Overview of Fine Granularity Scalability in MPEG-4 Video Standard Weiping Li Presented by : Brian Eriksson.
Video Compression—From Concepts to the H.264/AVC Standard
Block-based coding Multimedia Systems and Standards S2 IF Telkom University.
Video Compression and Standards
Flow Control in Compressed Video Communications #2 Multimedia Systems and Standards S2 IF ITTelkom.
MPEG Video Coding I: MPEG-1 1. Overview  MPEG: Moving Pictures Experts Group, established in 1988 for the development of digital video.  It is appropriately.
Introduction to H.264 / AVC Video Coding Standard Multimedia Systems Sharif University of Technology November 2008.
Present by 楊信弘 Advisor: 鄭芳炫
CSI-447: Multimedia Systems
Overview of the Scalable Video Coding
ENEE 631 Project Video Codec and Shot Segmentation
Limitations of Traditional Error-Resilience Methods
Standards Presentation ECE 8873 – Data Compression and Modeling
Progress & schedule Presenter : YY Date : 2014/10/3.
Presentation transcript:

FEC and RDO in SVC Thomas Wiegand 1

Outline Introduction SVC Bit-Stream Raptor Codes Layer-Aware FEC Simulation Results Linear Signal Model Description of the Algorithm Experimental Results 2

Introduction C. Hellge, T. Schierl, and T. Wiegand, “RECEIVER DRIVEN LAYERED MULTICAST WITH LAYER-AWARE FORWARD ERROR CORRECTION,” ICIP C. Hellge, T. Schierl, and T. Wiegand, “MOBILE TV USING SCALABLE VIDEO CODING AND LAYER-AWARE FORWARD ERROR CORRECTION,” ICME C. Hellge, T. Schierl, and T. Wiegand, “Multidimensional Layered Forward Error Correction using Rateless Codes,” ICC M. Winken, H. Schwarz, and T. Wiegand, “JOING RATE- DISTORTION OPTIMIZATION OF TRANSFORM COEFFICIENTS FOR SPATIAL SCALABLE VIDEO CODING USING SVC,” ICIP

SVC Bit-Stream Spatial-temporal-quality cube of SVC 4

RECEIVER DRIVEN LAYERED MULTICAST WITH LAYER-AWARE FORWARD ERROR CORRECTION C. Hellge, T. Schierl, and T. Wiegand ICIP C. Hellge, T. Schierl, and T. Wiegand, “MOBILE TV USING SCALABLE VIDEO CODING AND LAYER-AWARE FORWARD ERROR CORRECTION,” ICME C. Hellge, T. Schierl, and T. Wiegand, “Multidimensional Layered Forward Error Correction using Rateless Codes,” ICC 2008.

SVC Bit-Stream Equal FEC 6

Raptor Codes (1/2) Non-systematic Raptor codes G p  G LT  == 7 precoding processLT coding process SSsPSs ESs

Raptor Codes (2/2) Systematic Raptor codes Construction of pre-code symbols – G LT, G p, and SSs. – G pSys = – Solving 00 k n-1 G p  G LT  == 00 G pSys  = 0 p-1 0 k-1 0 … … p-1 k-1 … …… … … G LT’ G LT’’ k  0 p-1 … p s k 0 k-1 … ? = 8 unknown GpGp I G LT’ s k ks p

Layer-Aware FEC (1/5) Example 1 Example 2 9

Layer-Aware FEC (2/5) Encoding process – Example 3 10

Layer-Aware FEC (3/5) Decoding process – Example 4 11

Layer-Aware FEC (4/5) G LayeredLT (m) = [G* LT0 | G* LT1 | … | G LTm ] 12 G LayeredLT (m)  = PSs 0 PSs 1 PSs 2 … PSs m ESs 0 ESs 1 ESs 2 … ESs m

Layer-Aware FEC (5/5) G pSysLayered (m) 13 0 SS 0 0 SS 1 0 G pSysLayered (m)  = PSs 0 PSs 1 PSs 2 … PSs m 0 ESs 0 0 ESs 1 … 0 ESs m

Simulation Results (1/2) QVGA (BL) and VGA (EL) resolution using SVC over a DVB-H channel. – JSVM 8.8 – GOP size = 16 Size of a transmission block = 186 bytes Mean error burst length = 100 TBs 14

Simulation Results (2/2) 15

Joint Rate-Distortion Optimization of Transform Coefficients For Spatial Scalable Video Coding Using SVC M. Winken, H. Schwarz, and T. Wiegand ICIP

Hybrid Video Decoding s5s6s7s8s5s6s7s8 s 2 s 3 ½ (s 2 +s 3 ) s x u5u6u7u8u5u6u7u8 s1s2s3s4s5s6s7s8s1s2s3s4s5s6s7s8 0000c5c6c7c80000c5c6c7c8 s1s2s3s4000sxs1s2s3s4000sx ½ ½ s1s2s3s4s5s6s7s8s1s2s3s4s5s6s7s ? ? ? ? = ++ =+ Motion compensated values Dequantized residual Decoded pixel values Motion vectors DeQuntized and iDCT parameters Motion compensationiQ and iDCTException

Linear Signal Model (1/6) Linear signal model for K inter frames – s = Ms + Tc + p s: A (K  W  H)  1 vector of decoded signal M: A (K  W  H)  (K  W  H) matrix of motion parameters T: A (K  W  H)  (K  W  H) matrix of inverse quantization and DCT parameters c: A (K  W  H)  1 vector of received transform coefficients p: A (K  W  H)  1 intra signal or motion parameters outside s s11…s1WH…sK1…sKWHs11…s1WH…sK1…sKWH s11…s1WH…sK1…sKWHs11…s1WH…sK1…sKWH c11…c1WH…cK1…cKWHc11…c1WH…cK1…cKWH p11…p1WH…pK1…pKWHp11…p1WH…pK1…pKWH =++ 1KK+1 18 WHWH WHWHWHWH WHWH

Linear Signal Model (2/6) Optimal transform coefficients selection – Decoder receives MVs (M) and quantized transform coefficients (c). – fixed motion parameters (M), quantization parameters (T), and intra predictions (p). Rate and distortion are mainly controlled by c. – c’ = argmin c {D(c) + R(c)} subject to s = Ms + Tc + p D(c) = ||x - s|| 2 2, R(c) = ||c|| 1 19

Linear Signal Model (3/6) Optimal transform coefficients selection – Problem: MVs cannot be determined before the transform coefficients are selected (trade-off) – Solution: 20 s11…s1WHs21…s2WHs31…s3WH…sK1…sKWHs11…s1WHs21…s2WHs31…s3WH…sK1…sKWH c11…c1WHc21…c2WHc31…c3WH…cK1…cKWHc11…c1WHc21…c2WHc31…c3WH…cK1…cKWH p11…p1WHp21…p2WHp31…p3WH…pK1…pKWHp11…p1WHp21…p2WHp31…p3WH…pK1…pKWH =++ s11…s1WHs21…s2WHs31…s3WH…sK1…sKWHs11…s1WHs21…s2WHs31…s3WH…sK1…sKWH fixed initial

Linear Signal Model (4/6) Optimal transform coefficients – Problem size: K  W  H Sliding window approach (Reduce problem size) – s = M s + T c + p 21 window size step size

Linear Signal Model (5/6) Extension for spatial scalability – s 0 = M 0 s 0 + T 0 c 0 + p 0 – s 1 = M 1 s 1 + T 1 c 1 + p 1 + Bs 0 + RT 0 c 0 H.264/AVC MCP & Intra-prediction Hierarchical MCP & Intra-prediction Base layer coding texture motion texture motion Inter-layer prediction Intra Motion Residual Spatial decimation Multiplex Scalable bit-stream H.264/AVC compatible coder H.264/AVC compatible base layer bit-stream 22 Inter-layer motion prediction Inter-layer residual prediction

Linear Signal Model (6/6) Optimal transform coefficients in spatial scalability – c 0 ’ D 0 (c 0 ) + 0 R(c 0 ) c 1 ’ D 1 (c 0,c 1 ) + 1 (R(c 0 )+R(c 1 )) subject to s 0 = M 0 s 0 + T 0 c 0 + p 0 s 1 = M 1 s 1 + T 1 c 1 + p 1 + Bs 0 + RT 0 c 0  c 0 ’ (1-w)  (D 0 (c 0 ) + 0 R(c 0 )) + c 1 ’ w(D 1 (c 0,c 1 ) + 1 (R(c 0 )+R(c 1 ))) where  = (W 1 H 1 )/(W 0 H 0 ) = argmin c0’c1’ 23 = argmin c0’c1’

Description of the Algorithm Determine M 0, T 0, M 1, T 1, B, p 0, R, and p 1 by encoding the first K pictures using SVC reference encoder model. Solve optimization to determine c 0 of the base layer. Based on new c 0, determine B and R again. Solve optimization problem for only the enhancement layer. 24

Experimental Results (1/2) JSVM 9.9 – IPPP – QCIF (base layer) and CIF (enhancement layer) – CABAC – QP difference: 3 – Sliding windows size: 5  5 for base layer and 10  10 for enhancement layer 25

Experimental Results (2/2) 26