Gene Regulation Gene regulation in bacteria Cells vary amount of specific enzymes by regulating gene transcription – turn genes on or turn genes off.

Slides:



Advertisements
Similar presentations
Control of Eukaryotic Genes
Advertisements

Control of Gene Expression
AP Biology Control of Eukaryotic Genes Chapter 20.
AP Biology GENE REGULATION s lide shows by Kim Foglia modified Slides with blue edges are Kim’s.
Chapter 18~Regulaton of Gene Expression
Control of Eukaryotic Genes
Gene Control Chapter 11. Prokaryotic Gene Regulation Operons, specific sets of clustered genes, are the controlling unit Promoter: sequence where RNA.
Introns and Exons DNA is interrupted by short sequences that are not in the final mRNA Called introns Exons = RNA kept in the final sequence.
Control of gene expression Unit but different cells have different functions and look and act differently! WHY? Different sets of genes are expressed.
AP Biology Chapter 18 Regulation of Gene Expression.
Genetics Control of Eukaryotic Genes Genetics The BIG Questions… How are genes turned on & off in eukaryotes? How do cells with the same genes.
Regulation of Gene Expression Eukaryotes
Lysogenic vs Lytic Life Cycle Prokaryotic (Bacterial) Genes.
Regulaton of Gene Expression Control of Prokaryotic (Bacterial) Genes.
AP Biology Control of Eukaryotic Genes.
AP Biology Control of Eukaryotic Genes. AP Biology The BIG Questions… How are genes turned on & off in eukaryotes? How do cells with the same genes differentiate.
D O N OW : Review: how can you distinguish between pro/eukaryotes? Structurally? Environmentally? Both types of organisms seek efficiency, so genes often.
AP Biology Control of Eukaryotic Genes.
Prokaryotes and Eukaryotes
Evolution of gene regulation
AP Biology Control of Prokaryotic (Bacterial) Genes.
Control of Eukaryotic Genome
AP Biology Control of Eukaryotic Genes.
AP Biology Lecture #35 Gene Regulation Positive gene control occurs when an activator molecule interacts directly with the genome to switch transcription.
CHAPTER 18  REGULATION OF GENE EXPRESSION 18.1  Bacterial regulation I. Intro A. Genes are controlled by an on/off “switch ” 1. If on, the genes can.
3B2: Gene Expression Draw 5 boxes on your paper.
AP Biology Control of Prokaryotic (Bacterial) Genes.
Gene Regulation Bacterial metabolism Need to respond to changes – have enough of a product, stop production waste of energy stop production.
AP Biology Control of Prokaryotic (Bacterial) Genes.
Chapter 15. I. Prokaryotic Gene Control  A. Conserves Energy and Resources by  1. only activating proteins when necessary  a. don’t make tryptophan.
Chapter 15. I. Prokaryotic Gene Control  A. Conserves Energy and Resources by  1. only activating proteins when necessary  a. don’t make tryptophan.
Control of Eukaryotic Genes (Ch. 19) The BIG Questions… How are genes turned on & off in eukaryotes? How do cells with the same genes differentiate to.
Gene Expression: Prokaryotes and Eukaryotes AP Biology Ch 18.
Control of Eukaryotic Genes
CH. 18 Regulation of gene expression
Gene Regulation Ability of an organisms to control which genes are present in response to the environment.
Gene Expression.
Control of Prokaryotic (Bacterial) Genes
Prokaryotic (Bacterial) Genes
Control of Eukaryotic Genes
Control of Eukaryotic Genes
Control of Eukaryotic Genes
Control of Eukaryotic Genes
Control of Eukaryotic Genes
Control of Eukaryotic Genes
Control of Eukaryotic Genes
Eukaryote Regulation and Gene Expression
Control of Eukaryotic Genes
Epigenetics Study of the modifications to genes which do not involve changing the underlying DNA
Control of Eukaryotic Genes
Control of Eukaryotic Genes
Control of Eukaryotic Genes
Control of Eukaryotic Genes
Control of Eukaryotic Genes
Control of Eukaryotic Genes
Control of Eukaryotic Genes
Control of Eukaryotic Genes
Control of Eukaryotic Genes
Control of Eukaryotic Genes
Chp.19: Eukaryotic Gene Regulation Notes Please Print!
Control of Eukaryotic Genes
Control of Eukaryotic Genes
Control of Eukaryotic Genes
Control of Eukaryotic Genes
Control of Eukaryotic Genes
Control of Eukaryotic Genes
Control of Eukaryotic Genes
Presentation transcript:

Gene Regulation

Gene regulation in bacteria Cells vary amount of specific enzymes by regulating gene transcription – turn genes on or turn genes off turn genes OFF example if bacterium has enough tryptophan then it doesn’t need to make enzymes used to build tryptophan turn genes ON example if bacterium encounters new sugar (energy source), like lactose, then it needs to start making enzymes used to digest lactose STOP GO

Bacteria group genes together Operon – genes grouped together with related functions example: all enzymes in a metabolic pathway – promoter = RNA polymerase binding site single promoter controls transcription of all genes in operon transcribed as one unit & a single mRNA is made – operator = DNA binding site of repressor protein

So how can these genes be turned off? Repressor protein – binds to DNA at operator site – blocking RNA polymerase – blocks transcription

So how can these genes be turned off? Repressor protein – binds to DNA at operator site – blocking RNA polymerase – blocks transcription

Tryptophan operon What happens when tryptophan is present? Don’t need to make tryptophan-building enzymes Tryptophan is allosteric regulator of repressor protein

Lactose operon What happens when lactose is present? Need to make lactose-digesting enzymes Lactose is allosteric regulator of repressor protein

Positive Gene Regulation – If glucose levels are low (along with overall energy levels), then cyclic AMP (cAMP) binds to cAMP receptor protein (CRP) which activates transcription. If glucose levels are sufficient and cAMP levels are low (lots of ATP), then the CRP protein has an inactive shape and cannot bind upstream of the lac promotor.

Control of Eukaryotic Genes

Points of control The control of gene expression can occur at any step in the pathway from gene to functional protein 1.packing/unpacking DNA 2.transcription 3.mRNA processing 4.mRNA transport 5.translation 6.protein processing 7.protein degradation

1. DNA packing as gene control Degree of packing of DNA regulates transcription – tightly wrapped around histones no transcription genes turned off  heterochromatin darker DNA (H) = tightly packed  euchromatin lighter DNA (E) = loosely packed H E

DNA methylation Methylation of DNA blocks transcription factors – no transcription  genes turned off – attachment of methyl groups (–CH 3 ) to cytosine C = cytosine – nearly permanent inactivation of genes ex. inactivated mammalian X chromosome = Barr body

2. Transcription initiation Control regions on DNA – promoter nearby control sequence on DNA binding of RNA polymerase & transcription factors “base” rate of transcription – enhancer distant control sequences on DNA binding of activator proteins “enhanced” rate (high level) of transcription

Model for Enhancer action Enhancer DNA sequences – distant control sequences Activator proteins – bind to enhancer sequence & stimulates transcription Silencer proteins – bind to enhancer sequence & block gene transcription Turning on Gene movie

Transcription complex Enhancer Activator Coactivator RNA polymerase II A B F E H TFIID Core promoter and initiation complex Activator Proteins regulatory proteins bind to DNA at distant enhancer sites increase the rate of transcription Coding region T A Enhancer Sites regulatory sites on DNA distant from gene Initiation Complex at Promoter Site binding site of RNA polymerase

3. Post-transcriptional control Alternative RNA splicing – variable processing of exons creates a family of proteins

6-7. Protein processing & degradation Protein processing – folding, cleaving, adding sugar groups, targeting for transport Protein degradation – ubiquitin tagging – proteasome degradation Protein processing movie

initiation of transcription 1 mRNA splicing 2 mRNA protection 3 initiation of translation 6 mRNA processing 5 1 & 2. transcription - DNA packing - transcription factors 3 & 4. post-transcription - mRNA processing - splicing - 5’ cap & poly-A tail - breakdown by siRNA 5. translation - block start of translation 6 & 7. post-translation - protein processing - protein degradation 7 protein processing & degradation 4 4 Gene Regulation