Discovery of Regulatory Elements by a Phylogenetic Footprinting Algorithm Mathieu Blanchette Martin Tompa Computer Science & Engineering University of.

Slides:



Advertisements
Similar presentations
Chapter 10 How proteins are made.
Advertisements

Introduction to genomes & genome browsers
Presented By Dr. Shazzad Hosain Asst. Prof. EECS, NSU Multiple Sequence Alignment Motif Finding and Gene Prediction.
Combined analysis of ChIP- chip data and sequence data Harbison et al. CS 466 Saurabh Sinha.
Finding regulatory modules from local alignment - Department of Computer Science & Helsinki Institute of Information Technology HIIT University of Helsinki.
Changes in Highly Conserved Elements John McGuigan 05/04/2009.
Regulatory Motifs. Contents Biology of regulatory motifs Experimental discovery Computational discovery PSSM MEME.
Section 8.6: Gene Expression and Regulation
Challenges for computer science as a part of Systems Biology Benno Schwikowski Institute for Systems Biology Seattle, WA.
Gibbs Sampling in Motif Finding. Gibbs Sampling Given:  x 1, …, x N,  motif length K,  background B, Find:  Model M  Locations a 1,…, a N in x 1,
1 Regulatory Motif Finding Discovery of Regulatory Elements by a Computational Method for Phylogenetic Footprinting, Blanchette & Tompa (2002) Statistical.
Non-coding RNA William Liu CS374: Algorithms in Biology November 23, 2004.
[Bejerano Aut08/09] 1 MW 11:00-12:15 in Beckman B302 Profs: Serafim Batzoglou, Gill Bejerano TA: Cory McLean.
Basic Biology for CS262 OMKAR DESHPANDE (TA) Overview Structures of biomolecules How does DNA function? What is a gene? How are genes regulated?
Comparative Motif Finding
(Regulatory-) Motif Finding
Branch lengths Branch lengths (3 characters): A C A A C C A A C A C C Sum of branch lengths = total number of changes.
Evolution (1 st lecture). Finding Elements in DNA Conserved by Evolution Characterization of Evolutionary Rates and Constraints in Three Mammalian Genomes.
[Bejerano Fall09/10] 1 Milestones due today. Anything to report?
BNFO 235 Lecture 5 Usman Roshan. What we have done to date Basic Perl –Data types: numbers, strings, arrays, and hashes –Control structures: If-else,
Computational Genomics Lecture 1, Tuesday April 1, 2003.
Regulatory Motif Finding
Finding Regulatory Motifs in DNA Sequences
Gene Regulation and Microarrays …after which we come back to multiple alignments for finding regulatory motifs.
CIS786, Lecture 8 Usman Roshan Some of the slides are based upon material by Dennis Livesay and David.
Journal club 06/27/08. Phylogenetic footprinting A technique used to identify TFBS within a non- coding region of DNA of interest by comparing it to the.
BNFO 602/691 Biological Sequence Analysis Mark Reimers, VIPBG
Motif finding : Lecture 2 CS 498 CXZ. Recap Problem 1: Given a motif, finding its instances Problem 2: Finding motif ab initio. –Paradigm: look for over-represented.
Motif finding: Lecture 1 CS 498 CXZ. From DNA to Protein: In words 1.DNA = nucleotide sequence Alphabet size = 4 (A,C,G,T) 2.DNA  mRNA (single stranded)
Multiple Sequence Alignment CSC391/691 Bioinformatics Spring 2004 Fetrow/Burg/Miller (Slides by J. Burg)
BNFO 602/691 Biological Sequence Analysis Mark Reimers, VIPBG
Control of gene expression Unit but different cells have different functions and look and act differently! WHY? Different sets of genes are expressed.
Ultraconserved Elements in the Human Genome Bejerano, G., et.al. Katie Allen & Megan Mosher.
Eukaryotic Gene Expression The “More Complex” Genome.
Parsimony and searching tree-space Phylogenetics Workhop, August 2006 Barbara Holland.
1 Generalized Tree Alignment: The Deferred Path Heuristic Stinus Lindgreen
* only 17% of SNPs implicated in freshwater adaptation map to coding sequences Many, many mapping studies find prevalent noncoding QTLs.
Identification of Regulatory Binding Sites Using Minimum Spanning Trees Pacific Symposium on Biocomputing, pp , 2003 Reporter: Chu-Ting Tseng Advisor:
Part Transcription 1 Transcription 2 Translation.
Motif finding with Gibbs sampling CS 466 Saurabh Sinha.
JM - 1 Introduction to Bioinformatics: Lecture III Genome Assembly and String Matching Jarek Meller Jarek Meller Division of Biomedical.
TGCAAACTCAAACTCTTTTGTTGTTCTTACTGTATCATTGCCCAGAATAT TCTGCCTGTCTTTAGAGGCTAATACATTGATTAGTGAATTCCAATGGGCA GAATCGTGATGCATTAAAGAGATGCTAATATTTTCACTGCTCCTCAATTT.
Figure 2: over-representation of neighbors in the fushi-tarazu region of Drosophila melanogaster. Annotated enhancers are marked grey. The CDS is marked.
Comparative genomics analysis of NtcA regulons in cyanobacteria: Regulation of nitrogen assimilation and its coupling to photosynthesis Wen-Ting Huang.
Motifs BCH364C/391L Systems Biology / Bioinformatics – Spring 2015 Edward Marcotte, Univ of Texas at Austin Edward Marcotte/Univ. of Texas/BCH364C-391L/Spring.
Computational Genomics and Proteomics Lecture 8 Motif Discovery C E N T R F O R I N T E G R A T I V E B I O I N F O R M A T I C S V U E.
Pattern Matching Rhys Price Jones Anne R. Haake. What is pattern matching? Pattern matching is the procedure of scanning a nucleic acid or protein sequence.
The Lac Operon An operon is a length of DNA, made up of structural genes and control sites. The structural genes code for proteins, such as enzymes.
Comparative Sequence Analysis in Molecular Biology Martin Tompa Computer Science & Engineering Genome Sciences University of Washington Seattle, Washington,
1 Prediction of Regulatory Elements Controlling Gene Expression Martin Tompa Computer Science & Engineering Genome Sciences University of Washington Seattle,
MEME homework: probability of finding GAGTCA at a given position in the yeast genome, based on a background model of A = 0.3, T = 0.3, G = 0.2, C = 0.2.
Data Mining the Yeast Genome Expression and Sequence Data Alvis Brazma European Bioinformatics Institute.
Gene Expression. Remember, every cell in your body contains the exact same DNA… …so why does a muscle cell have different structure and function than.
Pattern Discovery and Recognition for Genetic Regulation Tim Bailey UQ Maths and IMB.
Chapter 2 From Genes to Genomes. 2.1 Introduction We can think about mapping genes and genomes at several levels of resolution: A genetic (or linkage)
What you need to know: The major goals of the Human Genome Project How prokaryotic genomes compare to eukaryotic genomes. The activity and role of transposable.
Intro to Probabilistic Models PSSMs Computational Genomics, Lecture 6b Partially based on slides by Metsada Pasmanik-Chor.
Transcription factor binding motifs (part II) 10/22/07.
Finding Motifs Vasileios Hatzivassiloglou University of Texas at Dallas.
12.4 Mutations Changes in the genetic material Mistake in copying, carcinogens Single gene = gene mutation Entire chromosome = chromosomal mutation.
The Transcriptional Landscape of the Mammalian Genome
CSCI2950-C Lecture 12 Networks
Genomes and Their Evolution
Comparative Sequence Analysis in Molecular Biology
Recitation 7 2/4/09 PSSMs+Gene finding
A Zero-Knowledge Based Introduction to Biology
Genomes and Their Evolution
Comparative RNA Structural Analysis
GT repeats are unique to Cdk6 and are conserved in different mammals.
Gene regulatory regions of the insect/crustacean egr-B homologs.
Presentation transcript:

Discovery of Regulatory Elements by a Phylogenetic Footprinting Algorithm Mathieu Blanchette Martin Tompa Computer Science & Engineering University of Washington

2 Outline How are genes regulated? What is phylogenetic footprinting? First solution Improvements and extensions Application to regulation of several important genes

3 Regulation of Genes What turns genes on and off? When is a gene turned on or off? Where (in which cells) is a gene turned on? How many copies of the gene product are produced?

4 Regulation of Genes Coding region Regulatory Element RNA polymerase Transcription Factor DNA

5 RNA polymerase Transcription Factor DNA Coding region Regulation of Genes Regulatory Element

6 Goal Identify regulatory elements in DNA sequences. These are: Binding sites for proteins Short substrings (5-25 nucleotides) Up to 1000 nucleotides (or farther) from gene Inexactly repeating patterns (“motifs”)

7 Phylogenetic Footprinting (Tagle et al. 1988) Functional sequences evolve slower than nonfunctional ones. Consider a set of orthologous sequences from different species Identify unusually well conserved regions

8 Substring Parsimony Problem Given: phylogenetic tree T, set of orthologous sequences at leaves of T, length k of motif threshold d Problem: Find each set S of k-mers, one k-mer from each leaf, such that the “parsimony” score of S in T is at most d. This problem is NP-hard.

9 Small Example AGTCGTACGTGAC... (Human) AGTAGACGTGCCG... (Chimp) ACGTGAGATACGT... (Rabbit) GAACGGAGTACGT... (Mouse) TCGTGACGGTGAT... (Rat) Size of motif sought: k = 4

10 Solution Parsimony score: 1 mutation AGTCGTACGTGAC... AGTAGACGTGCCG... ACGTGAGATACGT... GAACGGAGTACGT... TCGTGACGGTGAT... ACGG ACGT

11 CLUSTALW multiple sequence alignment (rbcS gene) CottonACGGTT-TCCATTGGATGA---AATGAGATAAGAT---CACTGTGC---TTCTTCCACGTG--GCAGGTTGCCAAAGATA AGGCTTTACCATT PeaGTTTTT-TCAGTTAGCTTA---GTGGGCATCTTA----CACGTGGC---ATTATTATCCTA--TT-GGTGGCTAATGATA AGG--TTAGCACA TobaccoTAGGAT-GAGATAAGATTA---CTGAGGTGCTTTA---CACGTGGC---ACCTCCATTGTG--GT-GACTTAAATGAAGA ATGGCTTAGCACC Ice-plantTCCCAT-ACATTGACATAT---ATGGCCCGCCTGCGGCAACAAAAA---AACTAAAGGATA--GCTAGTTGCTACTACAATTC--CCATAACTCACCACC TurnipATTCAT-ATAAATAGAAGG---TCCGCGAACATTG--AAATGTAGATCATGCGTCAGAATT--GTCCTCTCTTAATAGGA A GGAGC WheatTATGAT-AAAATGAAATAT---TTTGCCCAGCCA-----ACTCAGTCGCATCCTCGGACAA--TTTGTTATCAAGGAACTCAC--CCAAAAACAAGCAAA DuckweedTCGGAT-GGGGGGGCATGAACACTTGCAATCATT-----TCATGACTCATTTCTGAACATGT-GCCCTTGGCAACGTGTAGACTGCCAACATTAATTAAA LarchTAACAT-ATGATATAACAC---CGGGCACACATTCCTAAACAAAGAGTGATTTCAAATATATCGTTAATTACGACTAACAAAA--TGAAAGTACAAGACC CottonCAAGAAAAGTTTCCACCCTC------TTTGTGGTCATAATG-GTT-GTAATGTC-ATCTGATTT----AGGATCCAACGTCACCCTTTCTCCCA-----A PeaC---AAAACTTTTCAATCT TGTGTGGTTAATATG-ACT-GCAAAGTTTATCATTTTC----ACAATCCAACAA-ACTGGTTCT A TobaccoAAAAATAATTTTCCAACCTTT---CATGTGTGGATATTAAG-ATTTGTATAATGTATCAAGAACC-ACATAATCCAATGGTTAGCTTTATTCCAAGATGA Ice-plantATCACACATTCTTCCATTTCATCCCCTTTTTCTTGGATGAG-ATAAGATATGGGTTCCTGCCAC----GTGGCACCATACCATGGTTTGTTA-ACGATAA TurnipCAAAAGCATTGGCTCAAGTTG-----AGACGAGTAACCATACACATTCATACGTTTTCTTACAAG-ATAAGATAAGATAATGTTATTTCT A WheatGCTAGAAAAAGGTTGTGTGGCAGCCACCTAATGACATGAAGGACT-GAAATTTCCAGCACACACA-A-TGTATCCGACGGCAATGCTTCTTC DuckweedATATAATATTAGAAAAAAATC-----TCCCATAGTATTTAGTATTTACCAAAAGTCACACGACCA-CTAGACTCCAATTTACCCAAATCACTAACCAATT LarchTTCTCGTATAAGGCCACCA TTGGTAGACACGTAGTATGCTAAATATGCACCACACACA-CTATCAGATATGGTAGTGGGATCTG--ACGGTCA CottonACCAATCTCT---AAATGTT----GTGAGCT---TAG-GCCAAATTT-TATGACTATA--TAT----AGGGGATTGCACC----AAGGCAGTG-ACACTA PeaGGCAGTGGCC---AACTAC CACAATTT-TAAGACCATAA-TAT----TGGAAATAGAA------AAATCAAT--ACATTA TobaccoGGGGGTTGTT---GATTTTT----GTCCGTTAGATAT-GCGAAATATGTAAAACCTTAT-CAT----TATATATAGAG------TGGTGGGCA-ACGATG Ice-plantGGCTCTTAATCAAAAGTTTTAGGTGTGAATTTAGTTT-GATGAGTTTTAAGGTCCTTAT-TATA---TATAGGAAGGGGG----TGCTATGGA-GCAAGG TurnipCACCTTTCTTTAATCCTGTGGCAGTTAACGACGATATCATGAAATCTTGATCCTTCGAT-CATTAGGGCTTCATACCTCT----TGCGCTTCTCACTATA WheatCACTGATCCGGAGAAGATAAGGAAACGAGGCAACCAGCGAACGTGAGCCATCCCAACCA-CATCTGTACCAAAGAAACGG----GGCTATATATACCGTG DuckweedTTAGGTTGAATGGAAAATAG---AACGCAATAATGTCCGACATATTTCCTATATTTCCG-TTTTTCGAGAGAAGGCCTGTGTACCGATAAGGATGTAATC LarchCGCTTCTCCTCTGGAGTTATCCGATTGTAATCCTTGCAGTCCAATTTCTCTGGTCTGGC-CCA----ACCTTAGAGATTG----GGGCTTATA-TCTATA CottonT-TAAGGGATCAGTGAGAC-TCTTTTGTATAACTGTAGCAT--ATAGTAC PeaTATAAAGCAAGTTTTAGTA-CAAGCTTTGCAATTCAACCAC--A-AGAAC TobaccoCATAGACCATCTTGGAAGT-TTAAAGGGAAAAAAGGAAAAG--GGAGAAA Ice-plantTCCTCATCAAAAGGGAAGTGTTTTTTCTCTAACTATATTACTAAGAGTAC LarchTCTTCTTCACAC---AATCCATTTGTGTAGAGCCGCTGGAAGGTAAATCA TurnipTATAGATAACCA---AAGCAATAGACAGACAAGTAAGTTAAG-AGAAAAG WheatGTGACCCGGCAATGGGGTCCTCAACTGTAGCCGGCATCCTCCTCTCCTCC DuckweedCATGGGGCGACG---CAGTGTGTGGAGGAGCAGGCTCAGTCTCCTTCTCG

12 An Exact Algorithm (generalizing Sankoff and Rousseau 1975) W u [s] =best parsimony score for subtree rooted at node u, if u is labeled with string s. AGTCGTACGTG ACGGGACGTGC ACGTGAGATAC GAACGGAGTAC TCGTGACGGTG … ACGG: 2 ACGT: 1... … ACGG : 0 ACGT : 2... … ACGG : 1 ACGT : 1... … ACGG: +  ACGT: 0... … ACGG: 1 ACGT: k entries … ACGG: 0 ACGT: + ... … ACGG:  ACGT :0...

13 W u [s] =  min ( W v [t] + d(s, t) ) v : child t of u Recurrence

14 O(k  4 2k ) time per node W u [s] =  min ( W v [t] + d(s, t) ) v : child t of u Running Time

15 O(k  4 2k ) time per node Number of species Average sequence length Motif length Total time O(n k (4 2k + l )) W u [s] =  min ( W v [t] + d(s, t) ) v : child t of u Running Time

16 Improvements Better algorithm reduces time from O(n k (4 2k + l )) to O(n k (4 k + l )) By restricting to motifs with parsimony score at most d, greatly reduce the number of table entries computed (exponential in d, polynomial in k) Amenable to many useful extensions (e.g., allow insertions and deletions)

17 Application to  -actin Gene Gilthead sea bream (678 bp) Medaka fish (1016 bp) Common carp (696 bp) Grass carp (917 bp) Chicken (871 bp) Human (646 bp) Rabbit (636 bp) Rat (966 bp) Mouse (684 bp) Hamster (1107 bp)

18 Common carp ACGGACTGTTACCACTTCACGCCGACTCAACTGCGCAGAGAAAAACTTCAAACGACAAC A TTGGCATGGCTT TTGTTATTTTTGGCGC TTGACTCAGG AT C T AAAAACTGGAAC G GCGAAGGTGACGGCAATGTTTTGGCAAATAAGCATCCCCGAAGTTCTACAATGCATCTGAGGACTCAATGTTTTTTTTTTTTTTT TTTCTTT AGTCATTCCAAAT GTTTGTTAAATGCATTGTTCCGAAACTTATTTGCCTCTATGAAGGCTGCCCAGTAATTGGGAGCATACTTAACATTGTAGTATTGTA T GTAAATTATGT AACAAAACAATGACTGGGTTTTTGTACTTTCAGCCTTAATCTTGGGTTTTTTTTTTTTTTTGGTTCCAAAAAACTAAGCTTTACCATTCAAGATGTAAA GGTTTCATTCCCCCTGGCATATTGAAAAAGCTGTGTGGAACGTGGCGGTGCAGACATTTGGTGGGGCCA A CCTGTACACTGAC T AATTCAAATAAAAGT GCACATGTAAGACATCCTACTCTGTGTGATTTTTCTGTTTGTGCTGAGTGAACTTGCTATGAAGTCTTTTAGTGCACTCTTTAATAAAAGTAGTCTTCCCTTAAAGTGTCC CTTCCCTTATGGCCTTCACATTTCTCAACTAGCGCTTCAACTAGAAAGCACTTTAGGGACTGGGATGC Chicken ACCGGACTGTTACCAACACCCACACCCCTGTGATGAAACAAAACCCATAAATGCGCATAAAACAAGACGAG A TTGGCATGGCTT TATTTGTTTTTTCTTTTGGC GC TTGACTCAGGAT T A AAAAACTGGAAT G GTGAAGGTGTCAGCAGCAGTCTTAAAATGAAACATGTTGGAGCGAACGCCCCCAAAGTTCTACAATG CATCTGAGGACTTTGATTGTACATTTGTTTCTTTTTTAAT AGTCATTCCAAAT ATTGTTATAATGCATTGTTACAGGAAGTTACTCGCCTCTGTGAAGGCAACAGCCCA GCTGGGAGGAGCCGGTACCAATTACTGGTGTTAGATGATAATTGCTTGTC TGTAAATTATGT AACCCAACAAGTGTCTTTTTGTATCTTCCGCCTTAAAAACAAAACAC ACTTGATCCTTTTTGGTTTGTCAAGCAAGCGGGCTGTGTTCCCCAGTGATAGATGTGAATGAAGGCTTTACAGTCCCCCACAGTCTAGGAGTAAAGTGCCAGTATGTGGG GGAGGGAGGGGCT A CCTGTACACTGAC T TAAGACCAGTTCAAATAAAAGTGCACACAATAGAGGCTTGACTGGTGTTGGTTTTTATTTCTGTGCTGCGC TGCTTGGCCGTTGGTAGCTGTTCTCATCTAGCCTTGCCAGCCTGTGTGGGTCAGCTATCTGCATGGGCTGCGTGCTGGTGCTGTCTGGTGCAGAGGTTGGATAAACCGT GATGATATTTCAGCAAGTGGGAGTTGGCTCTGATTCCATCCTGAGCTGCCATCAGTGTGTTCTGAAGGAAGCTGTTGGATGAGGGTGGGCTGAGTGCTGGGGGACAGCT GGGCTCAGTGGGACTGCAGCTGTGCT Human GCGGACTATGACTTAGTTGCGTTACACCCTTTCTTGACAAAACCTAACTTGCGCAGAAAACAAGATGAG A TTGGCATGGCTT TATTTGTTTTTTTTGTTTTGTT TTGGTTTTTTTTTTTTTTTTGGC TTGACTCAGGAT T T AAAAACTGGAAC G GTGAAGGTGACAGCAGTCGGTTGGAGCGAGCATCCCCCAAAGTTCA CAATGTGGCCGAGGACTTTGATTGCATTGTTGTTTTTTTAAT AGTCATTCCAAAT ATGAGATGCATTGTTACAGGAAGTCCCTTGCCATCCTAAAAGCCACCCCACTTC TCTCTAAGGAGAATGGCCCAGTCCTCTCCCAAGTCCACACAGGGGAGGTGATAGCATTGCTTTCG TGTAAATTATGT AATGCAAAATTTTTTTAATCTTCGCCTTAATA CTTTTTTATTTTGTTTTATTTTGAATGATGAGCCTTCGTGCCCCCCCTTCCCCCTTTTTGTCCCCCAACTTGAGATGTATGAAGGCTTTTGGTCTCCCTGGGAGTGGGTGG AGGCAGCCAGGGCTT A CCTGTACACTGAC T TGAGACCAGTTGAATAAAAGTGCACACCTTAAAAATGAGGCCAAGTGTGACTTTGTGGTGTGGCTGGGT TGGGGGCAGCAGAGGGTG Parsimony score over 10 vertebrates: 0 1 2

19 Motifs Absent from Some Species Find motifs –with small parsimony score –that span a large part of the tree Example: in tree of 10 species spanning 760 Myrs, find all motifs with –score 0 spanning at least 250 Myrs –score 1 spanning at least 350 Myrs –score 2 spanning at least 450 Myrs –score 3 spanning at least 550 Myrs

20 Application to c-fos Gene Asked for motifs of length 10, with 0 mutations over tree of size 6 1 mutation over tree of size 11 2 mutations over tree of size 16 3 mutations over tree of size 21 4 mutations over tree of size 26 Puffer fish Chicken Pig Mouse Hamster Human Found: 0 mutations over tree of size 8 1 mutation over tree of size 16 3 mutations over tree of size 21 4 mutations over tree of size 28

21 Application to c-fos Gene MotifScoreConserved inKnown? CAGGTGCGAATGTTC04 mammals TTCCCGCCTCCCCTCCCC04 mammalsyes GAGTTGGCTGcagcc3puffer + 4 mammals GTTCCCGTCAATCcct1chicken + 4 mammals yes CACAGGATGTcc4all 6 yes AGGACATCTG1chicken + 4 mammals yes GTCAGCAGGTTTCCACG04 mammals yes TACTCCAACCGC04 mammals

22 Other Genes Similar results for the following genes: insulin c-myc promoter and intron growth hormone interleukin-3 histone H1  -globin dihydrofolate reductase fibroin myogenin prolactin thyroglobulin γ-actin 3´ UTR rbcS rbcL

23 Conclusions Guaranteed optimality for question posed Time linear in the number of species and the total sequence lengths, exponential in the parsimony score Practical on real biological data sets Discovered highly conserved regions, both known and not (yet) known Available at