Synthesis of Optically Active  Amino Alcohols Changyou Yuan Department of Chemistry Michigan State University -A survey of major developments after the.

Slides:



Advertisements
Similar presentations
Development of Palladium-Catalyzed C-N Bond Formation Reaction Wu Hua
Advertisements

Chapter 10. Alkyl Halides. What Is an Alkyl Halide An organic compound containing at least one carbon-halogen bond (C-X) –X (F, Cl, Br, I) replaces H.
Organic Chemistry 4 th Edition Paula Yurkanis Bruice Chapter 18 Carbonyl Compounds II Radicals Irene Lee Case Western Reserve University Cleveland, OH.
Rhodium Catalyzed Direct C-H Functionalization 陈殿峰
Condensation and Conjugate Addition Reactions of Carbonyl Compounds
Condensation and Conjugate Addition Reactions of Carbonyl Compounds
1 D. A. Evans’ Asymmetric Synthesis — From 80’s Chiral Auxiliary to 90’s Copper Complexes and Their Applications in Total Synthesis Supervisor: Professor.
Catalytic Cross-coupling Reactions with Unactivated Alkyl Electrophiles and Alkyl Nucleophiles Heng Su 04/11/2008 Department of Chemistry Brandeis University.
Asymmetric Suzuki–Miyaura Coupling in Water with a Chiral Palladium Catalyst Supported on an Amphiphilic Resin Yasuhiro Uozumi Angew. Chem. Int. Ed. 2009,
Chemistry 1010 Organic naming and functional groups.
Chapter 11 Introduction to Organic Chemistry: Alkanes
1 CH402 Asymmetric catalytic reactions Prof M. Wills Think about chiral centres. How would you make these products? Think about how you would make them.
Recent Development for Stereoselective Synthesis of 1,3-Polyol Ye Zhu Prof. Burgess’ Group Aug. 19, 2010.
I. Metal Based Reagents. II Non-Metal Based Reagents III. Epoxidations Oxidations.
Year 3 CH3E4 notes: Asymmetric Catalysis, Prof Martin Wills
The application of alkaline metal(Ca, Sr, Ba) complex as catalyst in organic chemistry 张文全 1.
Literature review Angewandte Chemie Int. Ed. 2007, Issues , Issues 1-5 Synlett 2007, Issues , Issues 1-2 Nicolas Demoulin 24/01/08.
Introduction Asymmetric reduction of C=N bonds represents a powerful method for the asymmetric formation of chiral amines. 1 Whilst many methods exist.
Synthesis of Alcohols Using Grignard Reagents
Reduction of Aldehydes and Ketones Reduction of Aldehydes and Ketones to Alcohols.
Chapter 13: Aldehydes and Ketones
1 Single electron transfer reaction involving 1,3-dicarbonyl compounds and its synthetic applications Reporter: Jie Yu Oct. 31, 2009.
Grignard Reaction Key features: Handling of air/ moisture sensitive chemicals, formation of C-C bond. n-Butyl lithium Key features: Strong base such as.
何玉萍 Palladium(II)-Catalyzed Alkene Functionalization.
Career-in-review Keiji Maruoka Reporter: Li Chen Supervisor: Prof. David Zhigang Wang
N-Heterocyclic carbenes : A powerful tool in organic synthesis Thomas B UYCK PhD Student in Prof. Zhu Group, LSPN, EPFL Frontiers in Chemical Synthesis.
Dynamic Kinetic Resolution: Practical Applications in Synthesis Valerie Keller November 1, 2001.
Chapter 15 Reagents with Carbon-Metal Bonds
Prerequisites: 333 CHEM Linked to course syllabus and “WEB PAGE” synthesis Modified from sides of William.
1 Literature Screening JACS Synthesis February 2 nd 2009 Thibaud Gerfaud.
© 2011 Pearson Education, Inc. 1 Organic Chemistry 6 th Edition Paula Yurkanis Bruice Chapter 18 Carbonyl Compounds II Reactions of Aldehydes and Ketones.
Carbon-Carbon Bond Forming Reactions I. Substitution Reaction II. Addition Reaction.
1 CATALYTIC ASYMMETRIC NOZAKI- HIYAMA-KISHI REACTION: ROLE OF ORGANOCHROMIUM COMPOUNDS AND NOVEL SALEN LIGANDS A RKAJYOTI C HAKRABARTY Prof. Uday Maitra’s.
1 何 龙 西华师范大学化学化工学院 Brønsted Acid-Catalyzed Asymmetric Three- Component 1,3-Dipolar Cycloaddition Reaction 化学应用与污染控制技术重点实验室年会, 2010 , 12 , 12.
1 Year 3 CH3E4 notes: Asymmetric Catalysis, Prof Martin Wills Reorganised to highlight key areas to learn and understand. You are aware of the importance.
1 Year 3 CH3E4 notes: Asymmetric Catalysis, Prof Martin Wills You are aware of the importance of chirality. This course will focus on asymmetric.
Ye Zhu 09/02/10 Burgess’s Group Meeting Chiral Ligands On A Spiro Scaffold for Transition-Metal- Catalyzed Asymmetric Reactions Work by Prof. Zhou Qi-Lin.
Utilization of Ring Closing Metathesis in Alkaloid Synthesis I. Synthetic Studies on the Immunosuppressant FR II. Toward the Total Synthesis of Lundurines.
Created by Professor William Tam & Dr. Phillis Chang Ch Chapter 18 Reactions at the  Carbon of Carbonyl Compounds Enols and Enolates.
I. Metal Based Reagents. II Non-Metal Based Reagents III. Epoxidations Oxidations.
Organocatalysis: Chiral Amines in Asymmetric Synthesis
February Louis-Philippe Beaulieu Complex-Induced Proximity Effect in Directed Ortho and Remote Metallation Methodologies.
Supervisor: Yong Huang Reporter: Qian Wang Date: Magical Chiral Spirobiindane Skeletons.
Reactions Involve Sulfur Ylides 陈殿峰 陈殿峰
ORGANIC SYNTHESIS CONTENTS Introduction Functional groups
Mitsunobu Reaction Acids and Acid Derivatives
P. 696 I. Carbonyl  -Substitution using Enols 2. Reactions of Enols c.  -Halogenation of aldehydes and ketones d. The Hell-Volhard-Zolinskii reaction.
Light and Palladium Induced Carbonylation Reactions of Alkyl Iodides Mechanism and Development Pusheng Wang Gong Group Meeting April 12 th 2014.
Indium in Organic Synthesis Huang-Jianzhou
C-H Insertion Story Justin Du Bois associate professor : University of Stanford B.S. : University of California at Berkeley (1992) Ph.D. : California Institute.
Organic Chemistry II Unit One: Alcohols and Ethers Unit Two: Carboxylic Acids & Acid Derivatives Unit Three:Aldehydes/Ketones and Carbanion Chemistry Unit.
Atom or group of atoms that gives a molecule “personality.” (Molecules with that group behave alike.) Functional Group.
Chapter 12: Alcohols from Carbonyl Compounds CH 12-1 Alcohol RedOx Oxidation (loss of H) of alcohols to form carbonyls Reduction (gain of H) of carbonyls.
Enantioselective Reactions Catalyzed by Iron Complexes Pablo Pérez.
Chem 3313 W.J. Baron Spring MWF Chapter 12 Nucleophilic Addition and Substitution at Carbonyl Groups Nucleophilic Addition to a Carbonyl Group Nucleophilic.
10. Alkyl Halides Based on McMurry’s Organic Chemistry, 6 th edition ©2003 Ronald Kluger Department of Chemistry University of Toronto.
Oxidation-Reduction & Organometallic
(Advisor : Prof. Eric N. Jacobsen)
Recent Development in Isocyanide-Based
Asymmetric Synthesis of (S) - Metoprolol
Total Synthesis of (±)-Cylindricine C
Enantioselective Rh-catalyzed Aldehyde C-H Activation
Éric Godin Literature Meeting October 12th 2016
Copper Hydride Catalyzed Hydroamination of Alkenes and Alkynes
Versatility of BINOL Reagent in Organic Chemistry: Problem Set Answers
Chapter 18 Additions to the Carbonyls
B-Hydroxysalicylhydrazones: Chiral, non-racemic tridentate catalysts for asymmetric synthesis Shawn R. Hitchcock, Department of Chemistry, Illinois State.
Name Reactions B.Sc.II P-V By N. M.Gosavi.
CONTENTS  INTRODUCTION  REACTION  MECHANISM  APPLICATION  SCOPE  CONCLUSION  REFERENCE.
CONTENTS  INTRODUCTION  REACTION  MECHANISM  APPLICATION  SCOPE  CONCLUSION  REFERENCE.
Presentation transcript:

Synthesis of Optically Active  Amino Alcohols Changyou Yuan Department of Chemistry Michigan State University -A survey of major developments after the year 2000

Important Free or Functionalized  Amino Alcohols

Strategies Available for the Synthesis of Optically Active  Amino Alcohols

Outline Part 1: Addition reactions  Addition of Carbanions to Imines  Radical Addition to Oximes, Hydrazones Part 2: Reduction reactions  Asymmetric Hydrogenations of α-N-substituted β- Keto Esters Part 3: Coupling Reactions  Cross-Coupling of Ferrocenylideneamine and Ferrocenecarboxaldehydes  Cross-Coupling of Benzylideneamines with Aldehydes  Proline-Catalyzed Assemble of Aldehydes, Ketones, and Amine or Azodicarboxylic Acid Esters Part 4: Kinetic Resolution of Racemic Epoxides Conclusion

Outline Part 1: Addition reactions  Addition of Carbanions to Imines  Radical Addition to Oximes, Hydrazones Part 2: Reduction reactions  Asymmetric Hydrogenations of α-N-substituted β- Keto Esters Part 3: Coupling Reactions  Cross-Coupling of Ferrocenylideneamine and Ferrocenecarboxaldehydes  Cross-Coupling of Benzylideneamines with Aldehydes  Proline-Catalyzed Assemble of Aldehydes, Ketones, and Amine or Azodicarboxylic Acid Esters Part 4: Kinetic Resolution of Racemic Epoxides Conclusion

Lithiation of O-benzyl Carbamates–imine Addition S.Arrasate, E.Lete, N.Sotomayor. Tetrahedron: Asymmetry, 2002, 13, 311–316.

Asymmetric Lithiation of O-benzyl Carbamates–imine Addition S.Arrasate, E.Lete, N.Sotomayor. Tetrahedron: Asymmetry, 2002, 13, 311– CO 2 2. CH 2 N 2

Asymmetric Lithiation of O-benzyl Carbamates–imine Addition R1R1 R2R2 TempYield(%)D.Re.e. (%) OCH 3 H -78 o C 6h >95:5 56 (96) 76 (91) S.Arrasate, E.Lete, N.Sotomayor. Tetrahedron: Asymmetry, 2002, 13, 311–316.

Addition of  -Sulfinyl Carbanions to N-p- Tolylsulfinylketimines SulfoxideT ( o C)Yield (%)De (%) (S) – 1 (R) – 1 (S) – 1 (R) >98 J.L.G.Ruano, J.Aleman, M.Prado, I. Fernandez. J. Org. Chem. 2004, 69, J.L.G.Ruano, J.Aleman. Org. Lett. 2003, 5,

Addition of  -Sulfinyl Carbanions to N-p- Tolylsulfinylketimines SulfoxideT ( o C)Yield (%)de at C(2) (%) (S) – 2 (R) – 2 (S) – 2 (R) J.L.G.Ruano, J.Aleman, M.Prado, I. Fernandez. J. Org. Chem. 2004, 69, J.L.G.Ruano, J.Aleman. Org. Lett. 2003, 5, C-1C-2 (S)-sulfinyl ketimine(S)-(2) (R)-(2) RSRS SSSS

J.L.G.Ruano, J.Aleman, M.Prado, I. Fernandez. J. Org. Chem. 2004, 69, J.L.G.Ruano, J.Aleman. Org. Lett. 2003, 5, Addition of  -Sulfinyl Carbanions to N-p- Tolylsulfinylketimines-Stereocontrol

J.L.G.Ruano, J.Aleman, M.Prado, I. Fernandez. J. Org. Chem. 2004, 69, J.L.G.Ruano, J.Aleman. Org. Lett. 2003, 5, Addition of  -Sulfinyl Carbanions to N-p- Tolylsulfinylketimines - stereocontrol

J.L.G.Ruano, J.Aleman, M.Prado, I. Fernandez. J. Org. Chem. 2004, 69, J.L.G.Ruano, J.Aleman. Org. Lett. 2003, 5, M.Crucianelli, P.Bravo, A.Arnone, E.Corradi, S.V.Meille, M.Zanda. J. Org. Chem. 2000, 65, Addition of  -Sulfinyl Carbanions to N-p- Tolylsulfinylketimines – Demasking Steps

Radical Addition of Hydroxymethyl and Vinyl Groups to C=N Bonds G.K.Friestad, S.E.Massari. J. Org. Chem. 2004, 69, G.K.Friestad, S.E.Massari. Org. Lett. 2000, 2,

Hydroxymethyl Addition to Oxime Ethers G.K.Friestad, S.E.Massari. J. Org. Chem. 2004, 69, G.K.Friestad, S.E.Massari. Org. Lett. 2000, 2,

Hydroxymethyl Addition to Hydrazones RMe t BuiPrPh Anti-7:syn-7 Yield (%) 79: : :4 80 >98:2 57 G.K.Friestad, S.E.Massari. J. Org. Chem. 2004, 69, G.K.Friestad, S.E.Massari. Org. Lett. 2000, 2,

Tandem Thiyl Addition-Cyclization: Vinyl Addition to Hydrazones RYield(%)Ratio (anti/syn) Me7790:10 t Bu6794:6 i Pr6198:2 Ph49>98:2 G.K.Friestad, S.E.Massari. J. Org. Chem. 2004, 69, G.K.Friestad, T.Jiang, G.M.Fioroni. Tetrahedron: Asymmetry, 2003, 14, 2853–2856.

Diastereocontrol in Radical Addition – Cyclization Beckwith-Houk Model R A Value (kcal/mol) dr of 7dr of 8 Me1.679:2190:10 t Bu1.885:1594:6 i Pr2.296:498:2 Ph2.9>98:2 G.K.Friestad, S.E.Massari. Org. Lett. 2000, 2, G.K.Friestad, S.E.Massari. J. Org. Chem. 2004, 69, G.K.Friestad, T.Jiang, G.M.Fioroni. Tetrahedron: Asymmetry, 2003, 14, 2853–2856.

Comparison of the Addition Reactions Stereocontrol De/ee (%) Yield (%) Anti or syn Chiral amine (additive) >95:5/ syn Sulfinylketimine and sulfinyl carbanions 60:40~ 90:10 / both Substrate control and Beckwith - Houk model 80:20~ >98:2/ anti

Outline Part 1: Addition reactions  Addition of Carbanions to Imines  Radical Addition to Oximes, Hydrazones Part 2: Reduction reactions  Asymmetric Hydrogenations of α-N-substituted β- Keto Esters Part 3: Coupling Reactions  Cross-Coupling of Ferrocenylideneamine and Ferrocenecarboxaldehydes  Cross-Coupling of Benzylideneamines with Aldehydes  Proline-Catalyzed Assemble of Aldehydes, Ketones, and Amine or Azodicarboxylic Acid Esters Part 4: Kinetic Resolution of Racemic Epoxides Conclusion

C.Mordant, P.Dünkelmann, V.R,Vidal, J.P.Genet. Eur. J. Org. Chem. 2004, Asymmetric Hydrogenations of α-N-substituted β-keto esters - Preparation the Syn  – Amino Alcohols RYield (%)de (%)ee (%) C3H7C3H BnO-C 4 H >99 C 5 H C 15 H 31 iPr

Asymmetric Hydrogenations of α-N-substituted β-keto esters - Preparation the Anti  – Amino Alcohols SubstrateSYNPHOS configurationYield (%)de anti (%)ee (%) R = C 3 H 7 R = BnO-C 4 H 8 R = C 5 H 11 R = C 15 H 31 R = iPr SRSRSRSRSRSRSRSRSRSR (2S, 3S) 93 (2R, 3R) 92 (2S, 3S) 93 (2R, 3R) 91 (2S, 3S) 91 (2R, 3R) 96 (2S, 3S) 96 (2R, 3R) 97 (2S, 3S) 96 (2R, 3R) C.Mordant, P.Dünkelmann, V.R,Vidal, J.P.Genet. Eur. J. Org. Chem. 2004,

Outline Part 1: Addition reactions  Addition of Carbanions to Imines  Radical Addition to Oximes, Hydrazones Part 2: Reduction reactions  Asymmetric Hydrogenations of α-N-substituted β- Keto Esters Part 3: Coupling Reactions  Cross-Coupling of Ferrocenylideneamine and Ferrocenecarboxaldehydes  Cross-Coupling of Benzylideneamines with Aldehydes  Proline-Catalyzed Assemble of Aldehydes, Ketones, and Amine or Azodicarboxylic Acid Esters Part 4: Kinetic Resolution of Racemic Epoxides Conclusion

Y.Tanaka, N.Taniguchi, T.Kimura, M.Uemura. J. Org. Chem. 2002, 67, Y.Tanaka, N.Taniguchi,M.Uemura. Org. Lett. 2002, 4, Cross-Coupling of N-Tosyl Ferrocenylideneamine and Ferrocenecarboxaldehydes Imine 2 ( X ) 3 yield(%) 4 yield(%) 5 yield(%) Me Bn Ph NMe 2 NHSO 2 Ph SO 2 Ph Ts Ms Trace trace

Cross-Coupling of Planar Chiral N-Tosyl Ferrocenylideneamine and Ferrocenecarboxaldehydes aldehyde 7 (% ee)imine 89 yield (%)%ee 9 R 1 =Me (95) R 1 =Me R 1 =I (95) R 1 =Br (97) R 1 = H R 2 =Me R 2 =I R 2 =Br R 2 =Me R 2 =I R 2 =Br Y.Tanaka, N.Taniguchi, T.Kimura, M.Uemura. J. Org. Chem. 2002, 67, Y.Tanaka, N.Taniguchi,M.Uemura. Org. Lett. 2002, 4,

Reaction Mechanism of Cross-Coupling with N-Tosyl Ferrocenylideneamines Y.Tanaka, N.Taniguchi, T.Kimura, M.Uemura. J. Org. Chem. 2002, 67, Y.Tanaka, N.Taniguchi,M.Uemura. Org. Lett. 2002, 4,

Reaction Mechanism of Cross-Coupling with N-Tosyl Ferrocenylideneamines Y.Tanaka, N.Taniguchi, T.Kimura, M.Uemura. J. Org. Chem. 2002, 67, Y.Tanaka, N.Taniguchi,M.Uemura. Org. Lett. 2002, 4, % enantiopure 97 % enantiopure

Cross-Coupling of Benzylideneamines with Aldehydes iminealdehydeyield (%)Syn/anti X=Ms X=Ts 11 R=H, Me, OMe 14 R=H, Me, OMe 11 R=H, Me, OMe, Cl 14 R=H, Me, OMe, Cl /50 – 54/56 60/40 – 67/33 70/30 – 87/13 95/5 – 97/3 Y.Tanaka, N.Taniguchi, T.Kimura, M.Uemura. J. Org. Chem. 2002, 67, Y.Tanaka, N.Taniguchi,M.Uemura. Org. Lett. 2002, 4,

Cross-Coupling of Benzylideneamines with Aldehydes Y.Tanaka, N.Taniguchi, T.Kimura, M.Uemura. J. Org. Chem. 2002, 67, Y.Tanaka, N.Taniguchi,M.Uemura. Org. Lett. 2002, 4,

Proline-Catalyzed Direct Asymmetric Mannich Reaction B.List, P.Pojarliev, W.T.Biller, H.J. Martin. J. Am. Chem. Soc. 2002, 124,

Proline-Catalyzed Assemble of Aldehydes, Ketones, and Azodicarboxylic Acid Asters N.S. Chowdari, D. B. Ramachary, C.F.Barbas. Org. Lett., 2003, 5,

StereocontrolDe/ee (%) Yield (%) Anti or syn Ferrocenylideneamines Ferrocenecarboxaldehydes >95/ anti planar chiral benzaldehyde chromium complexes 90/ > syn Proline 20-95/ 60-> syn Comparison of the Cross-Coupling Reactions

Outline Part 1: Addition reactions  Addition of Carbanions to Imines  Radical Addition to Oximes, Hydrazones Part 2: Reduction reactions  Asymmetric Hydrogenations of α-N-substituted β- Keto Esters Part 3: Coupling Reactions  Cross-Coupling of Ferrocenylideneamine and Ferrocenecarboxaldehydes  Cross-Coupling of Benzylideneamines with Aldehydes  Proline-Catalyzed Assemble of Aldehydes, Ketones, and Amine or Azodicarboxylic Acid Esters Part 4: Kinetic Resolution of Racemic Epoxides Conclusion

Aminolytic Kinetic Resolution with Amines G.Bartoli, M.Bosco, A.Carlone, M.Locatelli, M.Massaccesi, P.Melchiorre, L.Sambri. Org. Lett. 2004, 6, R1R1 R2R2 T ( o C)t (h)Yield (%)Ee of 4 (%)Ee of 2 (%) H OMeOMe H OMe HH rt -10 rt 0 rt >

Aminolytic Kinetic Resolution with Amines G.Bartoli, M.Bosco, A.Carlone, M.Locatelli, M.Massaccesi, P.Melchiorre, L.Sambri. Org. Lett. 2004, 6,

G.Bartoli, M.Bosco, A.Carlone, M.Locatelli, M.Massaccesi, P.Melchiorre, L.Sambri. Org. Lett. 2004, 6, Aminolytic Kinetic Resolution with carbamates (S,S)-catalyst (1.5 mol%) Additive (3 mol%) 20h, rt / in air RCat. (M)AdditiveSolventConv (%)ee(%) Boc Boc Cbz COOEt Fmoc Cr(Cl) Co(OAc) Co Co None AcOH p-nitrobenzoic acid CH 2 Cl 2 TBME TBME >95 95 > >

Aminolytic Kinetic Resolution with carbamates G.Bartoli, M.Bosco, A.Carlone, M.Locatelli, M.Massaccesi, P.Melchiorre, L.Sambri. Org. Lett. 2004, 6, RTime (h)Yield (%)ee(%) CH 3,, 6a (CH 2 ) 3 CH 3, 6b (CH 2 ) 4 CH=CH2, 6c c-C 6 H 11, 6d CH 2 O(1-naphthyl), 6e CH 2 Cl, 6f C 6 H 5, 6g p-BrC 6 H 4, 6h o-NO 2 C 6 H 4, 6i

StereocontrolDe/ee (%) Yield (%) Anti or syn Chiral Cr(Salen) >99/ anti Chiral Co(Salen) -/ > Comparison of the Resulution Methods

Conclusion Optically active  amino alcohols have been prepared through: Addition of carbanions, free radicals to C=N. Asymmetric hydrogenations of α-N-substituted β- keto esters Coupling of imines and aldehyes Kinetic resolution of racemic epoxides Much remains to be done: Scope of substrates Relative and absolute stereochemisry

Acknowledgement Dr. Hollingsworth Dr. Wulff Dr. Borhan Hollingsworth Group Xuezheng Carol Chang Xiaoyu Li Kun Zhen Trevor Joel Felica

Proline-Catalyzed Direct Asymmetric Three Component Mannich Reaction B.List, P.Pojarliev, W.T.Biller, H.J. Martin. J. Am. Chem. Soc. 2002, 124,

Proline-Catalyzed assemble of aldehydes, ketones, and azodicarboxylic acid esters N.S. Chowdari, D. B. Ramachary, C.F.Barbas. Org. Lett., 2003, 5,

C.Mordant, P.Dünkelmann, V.R,Vidal, J.P.Genet. Eur. J. Org. Chem. 2004, Asymmetric hydrogenations of α-N-substituted β-keto esters

J.L.G.Ruano, J.Aleman, M.Prado, I. Fernandez. J. Org. Chem. 2004, 69, J.L.G.Ruano, J.Aleman. Org. Lett. 2003, 5, Addition of  -Sulfinyl Carbanions to N-p- Tolylsulfinylketimines - stereocontrol