Objective: Intro to Animal Diversity. Heterotrophs that ingest food Multicellular with structural proteins Develop from embryonic layers Animal Characteristics.

Slides:



Advertisements
Similar presentations
An Introduction to Animal Diversity
Advertisements

AN INTRODUCTION TO ANIMAL DIVERSITY
ANIMAL DIVERSITY. YOU MUST KNOW… THE CHARACTERISTICS OF ANIMALS THE STAGES OF ANIMAL DEVELOPMENT HOW TO SORT THE ANIMAL PHYLA BASED ON SYMMETRY, DEVLOPMENT.
ANIMAL DIVERSITY.
Animal Evolution Chpt. 32. Multicellular Multicellular Heterotrophic digest within body.
Chap 32 Animal Evolution. ( 1) Animals are multicellular, heterotrophic eukaryotes. –They must take in preformed organic molecules through ingestion,
Chapter 32 Reading Quiz From which kingdom did animals most likely evolve? What is the only group of animals that do not possess “true tissues”? A sea.
Correlative Body Systems
The animal kingdom extends far beyond humans and other animals we may encounter 1.3 million living species of animals have been identified There are exceptions.
Introduction to Animals
Chapter 32 – Animal Diversity
23.1 Animal Characteristics Animals Animal Characteristics Multicellular Heterotrophic Lack cell walls Sexual Reproduction Movement Specialization.
ANIMAL KINGDOM. Main Characteristics Multicellular eukaryotes Heterotrophs Specialized cells; most have tissues Response to stimuli by nervous and muscular.
CHARACTERISTICS OF ANIMALS: WELCOME TO YOUR KINGDOM! Adapted from Kim Foglia - April 2015.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
An Introduction to Animal Diversity Chapter 32. Characteristics of Animals Multi-cellular Heterotrophic eukaryotes - ingestion Lack cell walls – collagen.
Chapter 32. Characteristics that Define Animals Nutritional modes Ingest organic molecules and digest them via enzymes Cell structure and specialization.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Chapter 32 An Introduction to Animal Diversity.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Chapter 32 An Introduction to Animal Diversity.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings Overview: Welcome to Your Kingdom The animal kingdom extends far beyond.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint TextEdit Art Slides for Biology, Seventh Edition Neil Campbell and.
LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings Ch 32 – Animal Diversity The animal kingdom extends far beyond humans.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings Overview: Welcome to Your Kingdom The animal kingdom extends far beyond.
Animal Evolution. The Basics  Animals = multicellular, heterotrophic  Life history: – Sexual w/ flagellated sperm/nonmotile egg –Development: cleavage,
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings Overview: Welcome to Your Kingdom The animal kingdom extends far beyond.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
Chapter 32 An Introduction to Animal Diversity. Overview: Welcome to Your Kingdom The animal kingdom extends far beyond humans and other animals we may.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
ANIMAL KINGDOM. MAIN CHARACTERISTICS Multicellular, eukaryotic, heterotrophs Specialized cells; most have tissues Response to stimuli by nervous and muscular.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
Chapter 32 Notes Introduction to Animal Evolution.
Chapter 32 An Introduction to Animal Diversity. Modes of Nutrition Animals differ in their mode of nutrition than plants and fungi. –Animals and fungi.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
Introduction to Animal Diversity Packet #76 Chapter #32.
Intro to Animal Diversity Chapter 32. Slide 2 of 17 Animalia – General Notes  1.3 million species  300K plant species  1.5 million fungi  >10 million.
Chapter 32 An Introduction to Animal Diversity
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
INTRO TO ANIMAL DIVERSITY
Introduction To Animal Evolution
Chapter 32 Introduction to Animal Diversity. Animal Characteristics 1.) All are heterotrophs & must ingest food to digest it. 2.) All eukaryotic and multicellular.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
An Introduction to Animal Diversity
An Introduction to Animal Diversity
An Introduction to Animal Diversity
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
Diversity of Life - Animals- (General Features)
Overview: Welcome to Your Kingdom
An Introduction to Animal Diversity
An Introduction to Animal Diversity
Chapter 32: An Overview of Animal Diversity
Multicellular eukaryotes Heterotrophy by ingestion
Fig
Animals AP Biology - Chapter 32.
Introduction to Animal Diversity
An introduction to animal diversity
An Introduction to Animal Diversity
An Introduction to Animal Diversity
Which of these organisms are animals?
Chapter 32 An Overview of Animal Diversity
An Introduction to Animal Diversity
An Introduction to Animal Diversity
Animals! Introduction.
An Introduction to Marine Animal Diversity
An Introduction to Animal Diversity
Presentation transcript:

Objective: Intro to Animal Diversity

Heterotrophs that ingest food Multicellular with structural proteins Develop from embryonic layers Animal Characteristics

Reproduction and Development Most animals reproduce sexually, with the diploid stage usually dominating the life cycle After a sperm fertilizes an egg, the zygote undergoes rapid cell division called cleavage Cleavage leads to formation of a blastula The blastula undergoes gastrulation, forming a gastrula with different layers of embryonic tissues

Fig Zygote Cleavage Eight-cell stage Cleavage Blastula Cross section of blastula Blastocoel Gastrulation Blastopore Gastrula Archenteron Ectoderm Endoderm Blastocoel

Origins of Animal Diversity The common ancestor of living animals may have lived between 675 and 875 million years ago This ancestor may have resembled modern choanoflagellates, protists that are the closest living relatives of animals

Fig OTHER EUKARYOTES Choanoflagellates Sponges Other animals Animals Individual choanoflagellate Collar cell (choanocyte)

Neoproterozoic Era (1 Billion– 524 Million Years Ago) Early members of the animal fossil record include the Ediacaran biota, which dates from 565 to 550 million years ago Appearance of soft bodied eukaryotes that were multicellular

Paleozoic Era (542–251 Million Years Ago) The Cambrian explosion (543 to 525 million years ago) marks the earliest fossil appearance of many major groups of living animals There are several hypotheses regarding the cause of the Cambrian explosion –New predator-prey relationships –A rise in atmospheric oxygen –The evolution of the Hox gene complex

Fig. 32-5

Animals can be characterized by “body plans” Body plan- a set of morphological and developmental traits

Symmetry Animals can be categorized according to the symmetry of their bodies, or lack of it Radial Symmetry- resemble a pie, several cutting planes produce identical pieces

Fig (a) Radial symmetry (b) Bilateral symmetry

Two-sided symmetry is called bilateral symmetry Bilaterally symmetrical animals have: –A dorsal (top) side and a ventral (bottom) side –A right and left side –Anterior (head) and posterior (tail) ends –Cephalization, the development of a head

Tissues Tissues are collections of specialized cells isolated from other tissues by membranous layers During development, three germ layers give rise to the tissues and organs of the animal embryo

Ectoderm is the germ layer covering the embryo’s surface Endoderm is the innermost germ layer and lines the developing digestive tube, called the archenteron Diploblastic animals have ectoderm and endoderm Triploblastic animals also have an intervening mesoderm layer; these include all bilaterians

Body Cavities Most triploblastic animals possess a body cavity A true body cavity is called a coelom and is derived from mesoderm Coelomates are animals that possess a true coelom

Fig Coelom Body covering (from ectoderm) Digestive tract (from endoderm) Tissue layer lining coelom and suspending internal organs (from mesoderm) (a) Coelomate Body covering (from ectoderm) Pseudocoelom Digestive tract (from endoderm) Muscle layer (from mesoderm) (b) Pseudocoelomate Body covering (from ectoderm) Tissue- filled region (from mesoderm) Wall of digestive cavity (from endoderm) (c) Acoelomate

A pseudocoelom is a body cavity derived from the mesoderm and endoderm Triploblastic animals that possess a pseudocoelom are called pseudocoelomates

Fig. 32-8b Pseudocoelom Body covering (from ectoderm) Muscle layer (from mesoderm) Digestive tract (from endoderm) (b) Pseudocoelomate

Triploblastic animals that lack a body cavity are called acoelomates

Fig. 32-8c (c) Acoelomate Body covering (from ectoderm) Wall of digestive cavity (from endoderm) Tissue- filled region (from mesoderm)

Protostome and Deuterostome Development Based on early development, many animals can be categorized as having protostome development or deuterostome development

Cleavage In protostome development, cleavage is spiral and determinate In deuterostome development, cleavage is radial and indeterminate With indeterminate cleavage, each cell in the early stages of cleavage retains the capacity to develop into a complete embryo Indeterminate cleavage makes possible identical twins, and embryonic stem cells

Fig Protostome development (examples: molluscs, annelids) Deuterostome development (examples: echinoderm, chordates) Eight-cell stage Spiral and determinate Radial and indeterminate Coelom Archenteron (a) Cleavage (b) Coelom formation Coelom Key Ectoderm Mesoderm Endoderm Mesoderm Blastopore Solid masses of mesoderm split and form coelom. Folds of archenteron form coelom. AnusMouth Digestive tube MouthAnus Mouth develops from blastopore.Anus develops from blastopore. (c) Fate of the blastopore

Fig. 32-9a Eight-cell stage (a) Cleavage Spiral and determinateRadial and indeterminate Protostome development (examples: molluscs, annelids) Deuterostome development (examples: echinoderms, chordates)

Coelom Formation In protostome development, the splitting of solid masses of mesoderm forms the coelom In deuterostome development, the mesoderm buds from the wall of the archenteron to form the coelom

Fig. 32-9b Coelom Protostome development (examples: molluscs, annelids) Deuterostome development (examples: echinoderms, chordates) (b) Coelom formation Key Ectoderm Mesoderm Endoderm Mesoderm Coelom Archenteron Blastopore Solid masses of mesoderm split and form coelom. Folds of archenteron form coelom.

Fate of the Blastopore The blastopore forms during gastrulation and connects the archenteron to the exterior of the gastrula In protostome development, the blastopore becomes the mouth In deuterostome development, the blastopore becomes the anus

Fig. 32-9c Anus Protostome development (examples: molluscs, annelids) Deuterostome development (examples: echinoderms, chordates) Anus Mouth Digestive tube (c) Fate of the blastopore Key Ectoderm Mesoderm Endoderm Mouth develops from blastopore.Anus develops from blastopore.