E-VLBI over TransPAC Masaki HirabaruDavid LapsleyYasuhiro KoyamaAlan Whitney Communications Research Laboratory, Japan MIT Haystack Observatory, USA Communications.

Slides:



Advertisements
Similar presentations
The LAC/UIC experiences through JGN2/APAN during SC04 Katsushi Kouyama and Kazumi Kumazoe Kitakyushu JGN Research Center / NiCT Robert L. Grossman, Yunhong.
Advertisements

Dominik Stoklosa Poznan Supercomputing and Networking Center, Supercomputing Department EGEE 2007 Budapest, Hungary, October 1-5 Workflow management in.
Dominik Stokłosa Pozna ń Supercomputing and Networking Center, Supercomputing Department INGRID 2008 Lacco Ameno, Island of Ischia, ITALY, April 9-11 Workflow.
Baseband Processing and SKA Simulations using Supercomputers: Enhancing Australia‘s radio astronomy facilities and its bid for the SKA Steven Tingay Swinburne.
1 DSN Network e-VLBI Calibration of Earth Orientation L. D. Zhang a,b, A. Steppe a, G. Lanyi a Presentation at 5-th International e-VLBI Workshop Westford,
National and International Networking Infrastructure and Research June 13, 2003 Mari Maeda NSF/CISE/ANIR.
Very Long Baseline Interferometry (VLBI) – Techniques and Applications Steven Tingay ATNF Astronomical Synthesis Imaging Workshop Narrabri, 24 – 28 September,
Current plan for e-VLBI demonstrations at iGrid2005 and SC2005 Yasuhiro Koyama *1, Tetsuro Kondo *1, Hiroshi Takeuchi *1, Moritaka Kimura, Masaki Hirabaru.
Ongoing e-VLBI Developments with K5 VLBI System Hiroshi Takeuchi, Tetsuro Kondo, Yasuhiro Koyama, and Moritaka Kimura Kashima Space Research Center/NICT.
E-VLBI Development at Haystack Observatory Alan Whitney Chet Ruszczyk Kevin Dudevoir Jason SooHoo MIT Haystack Observatory 24 March 2006 EVN TOG meeting.
VLBI Report LBA Operations & eVLBI Tasso Tzioumis ATNF May 2008.
E-VLBI Development at Haystack Observatory Alan Whitney Chet Ruszczyk MIT Haystack Observatory 10 Jan 2006 IVS General Meeting Concepion, Chile.
Electronic Transmission of Very- Long Baseline Interferometry Data National Internet2 day, March 18, 2004 David LapsleyAlan Whitney MIT Haystack Observatory,
E-VLBI Development at Haystack Observatory 5 th Annual e-VLBI Workshop Haystack Observatory 20 September 2006 Alan R. Whitney Kevin Dudevoir Chester Ruszczyk.
Goals of a New VLBI Data System Low cost Based primarily on unmodified COTS components Modular, easily upgradeable Robust operation, low maintenance.
E-VLBI developments with the K5 VLBI system Koyama Yasuhiro *1, Kondo Tetsuro *1, Kimura Moritaka *1, Takeuchi Hiroshi *1, and Masaki Hirabaru *2 *1 Kashima.
VLBI in Africa Michael Bietenholz Hartebeesthoek Radio Observatory.
An idea of Space mm/sub- mm VLBI Array Xiao-Yu Hong ( 洪晓瑜 ) Jun-Hui Zhao ( 赵军辉 ) Zhi-qiang Shen ( 沈志强 ) Shanghai Astronomical Observatory ( 中国科学院上海天文台.
Masaki Hirabaru NICT The 3rd International HEP DataGrid Workshop August 26, 2004 Kyungpook National Univ., Daegu, Korea High Performance.
E-VLBI: Connecting the Global Array of Radio Telescopes through High-Speed Networks Participating U.S. organizations: MIT Haystack Observatory MIT Lincoln.
Marcin Okoń Pozna ń Supercomputing and Networking Center, Supercomputing Department e-Science 2006, Amsterdam, Dec Virtual Laboratory as a Remote.
Developments for real-time software correlation e-VLBI Y. Koyama, T. Kondo, M. Kimura, M. Sekido, M. Hirabaru, and M. Harai Kashima Space Research Center,
E-VLBI at ≥ 1 Gbps -- “unlimited” networks? Tasso Tzioumis Australia Telescope National Facility (ATNF) 4 November 2008.
上海天文台 Shanghai Astronomical Observatory e-VLBI Progress in China Zhang Xiuzhong, team of Chinese VLBI Network Shanghai Astronomical Observatory Chinese.
Masaki Hirabaru Internet Architecture Group GL Meeting March 19, 2004 High Performance Data transfer on High Bandwidth-Delay Product Networks.
Geodetic Networks: The Supporting Framework Terrestrial Reference Frame is ‘Critical Infrastructure’ for all Earth science research and applications. Global.
e-VLBI International Research Networking Needs Alan R. Whitney MIT Haystack Observatory.
e-VLBI: Overview and Update Alan R. Whitney MIT Haystack Observatory.
Radio Astronomy Applications Group Kashima Space Research Center National Institute of Information and Communications Technology EGU2005 GI1-1TH5P-0026.
1 Masaki Hirabaru and Yasuhiro Koyama APEC-TEL APGrid Workshop September 6, 2005 e-VLBI: Science over High-Performance Networks.
Hirabaru, Koyama, and Kimura NICT APAN NOC Meeting January 20, 2005 e-VLBI updates.
Masaki Hirabaru CRL, Japan APAN Engineering Team Meeting APAN 2003 in Busan, Korea August 27, 2003 Common Performance Measurement Platform.
Masaki Hirabaru CRL, Japan ITRC MAI BoF Kochi November 6, 2003 広帯域・高遅延ネットワークでの TCP性能計測.
VLBI/eVLBI with the 305-m Arecibo Radio Telescope Chris Salter Tapasi Ghosh Emmanuel Momjian Arun Venkataraman Jon Hagen.
E-VLBI: Creating a Global Radio Telescope via High-Speed Networks Alan R. Whitney MIT Haystack Observatory SLAC Data Management Workshop 17 March 2004.
E-VLBI: Connecting the World’s Radio Telescopes with High-Speed Networks Alan R. Whitney MIT Haystack Observatory Westford, Massachusetts, USA.
E-VLBI and End-to-End Performance Masaki HirabaruYasuhiro KoyamaTetsuro Kondo NICT KoganeiNICT Kashima
Masaki Hirabaru Tsukuba WAN Symposium 2005 March 8, 2005 e-VLBI and End-to-End Performance over Global Research Internet.
E-VLBI – Creating a Global Radio-Telescope Array via High-Speed Networks Alan R. Whitney MIT Haystack Observatory Internet2 Fall Member Meeting San Diego,
VTP: VDIF Transport Protocol Chris Phillips, Alan Whitney, Mamoru Sekido & Mark Kettenis November 2011.
Research Networks and Astronomy Richard Schilizzi Joint Institute for VLBI in Europe
Masaki Hirabaru Network Performance Measurement and Monitoring APAN Conference 2005 in Bangkok January 27, 2005 Advanced TCP Performance.
NASA Tests e-VLBI concept from the Madrid Deep Space Network to JPL Thom Stone Principal Computer Scientist CSC-NASA Ames Research Center.
02/6/ jdr1 Interference in VLBI Observations Jon Romney NRAO, Socorro ===================================== 2002 June 12.
Masaki Hirabaru NICT Koganei 3rd e-VLBI Workshop October 6, 2004 Makuhari, Japan Performance Measurement on Large Bandwidth-Delay Product.
E-VLBI Trials Ny-Alesund to Haystack (VSI-E non real-time) C. Ruszczyk, J. Soohoo, A. Whitney [1], R. Hanssen, F. Koppang [2], O. Schjelderup, H. Eidnes.
76-m Lovell Telescope Jodrell Bank, UK Even big telescopes see no more detail than the naked eye High bandwidth data transfer - the future of European.
上海天文台 Shanghai Astronomical Observatory 4th IVS General Meeting Spacecraft Tracking with Chinese VLBI Network Xiuzhong Zhang and Chinese VLBI Network Team.
EVLBI at Wettzell R. Dassing G. Kronschnabl. Wettzell is a Fundamentalstation for Geodesy (i.e. all relevant geodetic measurement systems are collocated.
Demonstration of 16Gbps/station broadband-RF VLBI system Alan Whitney for the VLBI2010 development team MIT Haystack Observatory 22 October st Intl.
Prof. Steven Tingay (ICRAR, Curtin University) Workshop on East-Asian Collaboration on the SKA Daejeon, Korea, November 30 – December 2, 2011 A long baseline.
Masaki Hirabaru NICT APAN JP NOC Meeting August 31, 2004 e-VLBI for SC2004 bwctl experiment with Internet2.
03/6/121 Using the VLBA for Spacecraft Navigation Jonathan Romney National Radio Astronomy Observatory VLBA 10 th Anniversary 2003 June 9 – 12.
E. Momjian, T. Ghosh, C. Salter, & A. Venkataraman (NAIC-Arecibo Observatory) eVLBI with the 305 m Arecibo Radio Telescope ABSTRACT Using the newly acquired.
Geodetic Networks: The Supporting Framework Terrestrial Reference Frame is ‘Critical Infrastructure’ for all Earth science research and applications. Global.
E-VLBI: A Brief Overview Alan R. Whitney MIT Haystack Observatory.
Possible eVLBI connection between Eastern Asian Observatories Noriyuki KAWAGUCHI National Astronomical Observatory, Japan eVLBI Workshop
1 Masaki Hirabaru and Yasuhiro Koyama PFLDnet 2006 Febrary 2, 2006 International e-VLBI Experience.
An Analysis of AIMD Algorithm with Decreasing Increases Yunhong Gu, Xinwei Hong, and Robert L. Grossman National Center for Data Mining.
Data-Acquisition and Transport – Looking Forward to 2010 and Beyond Definition of ‘Data-Acquisition and Transport’ Continuum of Transport Options Limitations.
NEXPReS Period 3 Overview WP8 FlexBuff High-Bandwidth, High-Capacity Networked Storage Ari Mujunen Aalto University Metsähovi Radio Observatory Finland.
SA1: second year overview Arpad Szomoru JIVE January 30EXPReS Board Meeting, Utrecht, the Netherlands: SA1Slide #2 Outline Accomplishments in 2007.
上海天文台 Shanghai Astronomical Observatory CVN in Chang’e-3 lunar exploration mission ZHENG Weimin Shanghai Astronomical Observatory, Chinese.
E-VLBI – Creating a Global Radio-Telescope Array via High-Speed Networks Alan R. Whitney MIT Haystack Observatory Optical Waves: Who Needs Them and Why?
e-VLBI: Creating a Global Radio Telescope via High-Speed Networks
Space Geodesy Branch Highlights, August 2002 CONT02 VLBI Campaign
Haystack Geodesy Program and Technical Development
Alan R. Whitney MIT Haystack Observatory
e-VLBI Deployments with Research Internet
The First Implementation of RTP Framing for e-VLBI
Presentation transcript:

e-VLBI over TransPAC Masaki HirabaruDavid LapsleyYasuhiro KoyamaAlan Whitney Communications Research Laboratory, Japan MIT Haystack Observatory, USA Communications Research Laboratory, Japan MIT Haystack Observatory, USA

Introduction –Overview of e-VLBI –Advantages of e-VLBI –Typical e-VLBI data requirements e-VLBI Experiments to date Future e-VLBI experiments over TransPAC Summary of impact of e-VLBI Outline

Traditional VLBI The Very-Long Baseline Interferometry (VLBI) Technique (with traditional data recording on magnetic tape or disk) The Global VLBI Array (up to ~20 stations can be used simultaneously)

VLBI astronomy example ASTRONOMY Highest resolution technique available to astronomers – tens of microarcseconds Allows detailed studies of the most distant objects GEODESY Highest precision (few mm) technique available for global tectonic measurements Highest spatial and time resolution of Earth’s motion in space for the study of Earth’s interior Earth-rotation measurements important for military/civilian navigation Fundamental calibration for GPS constellation within Celestial Ref Frame VLBI Science Plate-tectonic motions from VLBI measurements

Traditional VLBI –Data is recorded onto magnetic media (e.g. tape or hard disk) - currently at 1 Gbps/station –Data shipped to central site –Data correlated - result published 4d - 15 weeks later e-VLBI –Use the network instead of storage media –Transmit data in real-time or near-real-time from instrument (telescope) to processing center –Many advantages... e-VLBI

Advantages Scientific: –Bandwidth growth potential for higher sensitivity –Rapid processing turnaround Practical –Real-time diagnostics –Increased reliability –Lower cost

Typical e-VLBI Data Requirements DescriptionGeodesyAstronomy Duration(hours)24/week Blocks of several contiguous days Telescopes7 (nominal)Up to 20 % Observation Time Data rate(Mbps) Total data collected (/station/day) ~ 1 TB~ 7 TB

Typical e-VLBI Data Requirements

e-VLBI Experiments to Date Westford-GGAO e-VLBI results –First near-real-time e-VLBI experiment conducted on 6 Oct 02 –GGAO disk-to-disk transfer at average 788 Mbps transfer rate Several US to Japan demonstrations –Support of Geodetic e-VLBI experiments: Up to ~ 100 Mbps sustained for near Real-time data transfer –Sub-24 hour UT1 estimate –Network performance characterization and protocol testing ~ 600 Mbps transfer rate in Tokyo to US experiment Recent 500 TB data transfers of real experimental data paving the way for “operationalization” of VLBI transfers –CRF22, CRF23, T2023, T2024 part of IVS schedule Internet2 Demonstration - October 2003 –~644 Mbps using FAST TCP –~400 Mbps using High Speed TCP (HSTCP)

High Performance Transfer Protocols Tsunami –Rate-based flow control –Data over UDP –Control over TCP –Mark Meiss, Steve Wallace - Indiana University UDT –Rate-based flow control –Data and Control over UDP –Yunhong Gu, Robert Grossman - University of Illinois FAST TCP –Windowed, delay-based high performance TCP –Steven Low, et. al –Netlab, Caltech

Tsunami: Japan  US (disc-to-disc)

Tsunami: Throughput

UDT: Japan  US

UDT Throughput

Tokyo XP Kashima 1G 2.5G TransPAC 9,000km 4,000km Los Angeles Chicago New York MIT Haystack 10G 1G Abilene 1G 100km e-VLBI server test server 1G x2 Koganei 2004 e-VLBI experimental plan between MIT Haystack and CRL Kashima at 1Gbps – Continued experiments using commodity Internet connectivity at Kashima – Experiments using 1 Gigabit per second Internet connectivity at Kashima – Experiments using real-time correlation – Planned 1 Gbps upgrade at Kashima – Planned 2.5 Gbps upgrade at Haystack

References TSUNAMI – UDT – FAST TCP –

Summary of Impact of e-VLBI Program Opens new doors for national and international astronomical and geophysical research. Represents an excellent match between modern Information Technology and a real science need. Motivates the development of a new shared- network protocols that will benefit other similar applications. Drives an innovative IT research application and fosters a strong international science collaboration.

Thank you David Lapsley

Backup