New results on Neutron Single Target Spin Asymmetries from Transversely polarized 3 He target at Jlab Nilanga Liyanage, University of Virginia  Recent.

Slides:



Advertisements
Similar presentations
Study Neutron Spin Structure with a Solenoid Jian-ping Chen, Jefferson Lab Hall A Collaboration Meeting June 22-23, 2006 Inclusive DIS: Valence quark spin.
Advertisements

Jin Huang PhD Candidate, MIT For MENU 2010 May 31, Williamsburg.
Longitudinal Spin at RHIC 29 th Winter Workshop on Nuclear Dynamics February 7, 2013 Cameron McKinney.
Measurement of polarized distribution functions at HERMES Alessandra Fantoni (on behalf of the HERMES Collaboration) The spin puzzle & the HERMES experiment.
TMDs and PVDIS: JLab 6 GeV results and 12 GeV Plan J. P. Chen, Jefferson Lab APFB2014, Hahndorf, Australia, April 7-11, 2014  TMDs with 6 GeV JLab: Exploration.
Constraining the polarized gluon PDF in polarized pp collisions at RHIC Frank Ellinghaus University of Colorado (for the PHENIX and STAR Collaborations)
Transverse Spin and TMDs Jian-ping Chen, Jefferson Lab EIC Workshop at INT09, Oct.19-23, 2009  Introduction: why do we care about transverse structure?
Parton Distributions at High x J. P. Chen, Jefferson Lab DNP Town Meeting, Rutgers, Jan , 2007  Introduction  Unpolarized Parton Distribution at.
SoLID SIDIS Update Zhiwen Zhao University of Virginia For SoLID Collaboration Hall A Collaboration Meeting 2013/12/17.
Simulations of Single-Spin Asymmetries from EIC Xin Qian Kellogg, Caltech EIC Meeting at CUA, July 29-31, TMD in SIDIS 2.Simulation of SIDIS.
Semi-inclusive DIS Physics with SoLID J. P. Chen, Jefferson Lab Hall A&C Collaboration Meeting, JLab, June 5-6, 2014  Introduction  Spin-flavor and SIDIS.
SoLID-Spin Program at 12 GeV JLab Xin Qian Kellogg Radiation Lab Caltech For SoLID Collabration 1Weihai Workshop.
1 Updates on Transversity Experiments and Interpretations Jen-Chieh Peng Transversity Collaboration Meeting, JLab, March 4, 2005 University of Illinois.
9/19/20151 Nucleon Spin: Final Solution at the EIC Feng Yuan Lawrence Berkeley National Laboratory.
9/19/20151 Semi-inclusive DIS: factorization Feng Yuan Lawrence Berkeley National Laboratory RBRC, Brookhaven National Laboratory.
THE DEEP INELASTIC SCATTERING ON THE POLARIZED NUCLEONS AT EIC E.S.Timoshin, S.I.Timoshin.
Experimental Study of Single Spin Asymmetries and TMDs Jian-ping Chen, Jefferson Lab QCD Evolution Workshop, JLab, May 6-10, 2013  Recent SSA Results.
Overview of the SoLID Experiments Jian-ping Chen, Jefferson Lab Hadron-China2015, August 3, 2015  Introduction  Approved Experiments (5 + 3 run group)
Highlights of Spin Study at JLab Hall A: Longitudinal and Transverse J. P. Chen, Jefferson Lab Pacific-Spin2011, Cairns, Australia  Introduction  Longitudinal.
TMD Study at JLab: Results and Future J. P. Chen, Jefferson Lab PacificSPIN-13, Jinan, China, October 28-31, 2013  TMDs with 6 GeV JLab: Exploration Results.
Spin Azimuthal Asymmetries in Semi-Inclusive DIS at JLAB  Nucleon spin & transverse momentum of partons  Transverse-momentum dependent distributions.
High-Energy QCD Spin Physics Xiangdong Ji Maryland Center for Fundamental Physics University of Maryland DIS 2008, April 7, 2008, London.
Jin Huang PhD Candidate, MIT For Hall A Collaboration Meeting June 10, JLab.
Spin-Flavor Decomposition J. P. Chen, Jefferson Lab PVSA Workshop, April 26-27, 2007, Brookhaven National Lab  Polarized Inclusive DIS,  u/u and  d/d.
Detector requirement form TMD working group J. P. Chen for the TMD working group June 5, 2010, EIC Detector Workshop, JLab TMD Program - A lot of enthusiasm,
SIDIS with SoLID and a polarized 3 He target Haiyan Gao Duke University Durham, NC, U.S.A. ( SoLID Collaboration Meeting October 14-15, 2011.
Spin and azimuthal asymmetries in SIDIS at JLAB  Physics Motivation  Jlab kinematics and factorization  Double spin asymmetries  Single Spin Asymmetries.
New results on SIDIS SSA from JLab  Physics Motivation  Double spin asymmetries  Single Spin Asymmetries  Future measurements  Summary H. Avakian.
P. Bosted, DNP Spin and azimuthal asymmetries in SIDIS at JLAB  Physics Motivation  Jlab kinematics and factorization  Single Spin Asymmetries.
SIDIS with Polarized 3 He and SoLID at 11 GeV JLab Xin Qian Kellogg Radiation Lab Caltech.
Overview of SIDIS Xin Qian Caltech SoLID Collaboration Meeting1.
Zhongbo Kang Los Alamos National Laboratory QCD structure of the nucleon and spin physics Lecture 5 & 6: TMD factorization and phenomenology HUGS 2015,
Future Physics at JLab Andrew Puckett LANL medium energy physics internal review 12/14/
DVCS with Positron Beams at the JLab 12 GeV Upgrade
Contalbrigo Marco INFN Ferrara Partons in Nucleons and Nuclei September 30, 2011 Marrakech.
Update on Experiments using SoLID Spectrometer Yi Qiang for SoLID Collaboration Hall A Collaboration Meeting Dec 16, 2011.
Harut Avakian 1 H. Avakian, JLab, Sep 5 Rich Technical Review, 5 th September 2013 Kaon physics with CLAS12 Introduction Kaons in SIDIS Medium effects.
Experimental Study of Nucleon Structure and QCD J. P. Chen, Jefferson Lab Workshop on Confinement Physics, March 12, 2012  Introduction  Selected JLab.
Single-Spin Asymmetries at CLAS  Transverse momentum of quarks and spin-azimuthal asymmetries  Target single-spin asymmetries  Beam single-spin asymmetries.
Luciano L. Pappalardo University of Ferrara Selected TMD results from HERMES L.L. Pappalardo – Baryons 2013 – Glasgow – June
Studies of TMDs with CLAS & CLAS12 P. Rossi Laboratori Nazionali di Frascati - INFN On behalf of the CLAS Collaboration  Introduction  SIDIS experiments.
R. Joosten, Oct. 7, 2008 Measurement of TMDs in Semi-Inclusive DIS in Semi-Inclusive DIS Rainer Joosten University of Bonn Charlottesville, VA, October.
1 Probing Spin and Flavor Structures of the Nucleon with Hadron Beams Flavor and spin structures of the nucleons –Overview and recent results Future prospects.
Measurements with Polarized Hadrons T.-A. Shibata Tokyo Institute of Technology Aug 15, 2003 Lepton-Photon 2003.
1 Harut Avakian Studies on transverse spin effects at Jlab QCD Structure of the Nucleon June 12-16, 2006, Rome Physics motivation k T -effects from unpolarized.
Overview of the SoLID Experiments Jian-ping Chen, Jefferson Lab JLab Users Group Meeting, June 3, 2015  Introduction  Approved Experiments (5 + 2 run.
Contalbrigo Marco INFN Ferrara QCD Evolution 13 7 th May 2013, JLab – Newport News.
Thomas Jefferson National Accelerator Facility PAC-25, January 17, 2004, 1 Baldin Sum Rule Hall C: E Q 2 -evolution of GDH integral Hall A: E94-010,
Study Transverse Spin and TMDs with SIDIS Experiments J. P. Chen, Jefferson Lab Hall A Physics Workshop, December 14, 2011  Introduction  Transverse.
Measurement of Flavor Separated Quark Polarizations at HERMES Polina Kravchenko (DESY) for the collaboration  Motivation of this work  HERMES experiment.
For SoLID Collaboration Meeting Spokespersons Jian-Ping Chen (JLab) Jin Huang (MIT) Yi Qiang (JLab) Wenbiao Yan (USTC, China)
Contalbrigo Marco INFN Ferrara ECT* Workshop - Lattice QCD and Hadron Physics 15 th January 2014, Trento.
Nilanga Liyanage University of Virginia For Jefferson Lab Hall A, CLAS and RSS Collaborations.
TMD flavor decomposition at CLAS12 Patrizia Rossi - Laboratori Nazionali di Frascati, INFN  Introduction  Spin-orbit correlations in kaon production.
Latest results from COMPASS TMD physics Anna Martin Trieste University & INFN on behalf of the COMPASS Collaboration.
Delia Hasch Transversity & friends from HERMES International workshop on hadron and spectroscopy, Torino, Italy, 31. March – 02. April 2008 outline outline.
I R F U Nucleon structure studies with the COMPASS experiment at CERN Stephane Platchkov Institut de Recherche sur les lois Fondamentales de l’Univers.
Tensor and Flavor-singlet Axial Charges and Their Scale Dependencies Hanxin He China Institute of Atomic Energy.
JEFFERSON LAB CLOSE-OUT 6 GeV  Finish analysis on CLAS eg1-DVCS (SSAs + DSAs in   production with longitudinally polarized H and D targets) and.
R. Joosten, Oct. 7, 2008 Measurement of TMDs in Semi-Inclusive DIS in Semi-Inclusive DIS Rainer Joosten University of Bonn Charlottesville, VA, October.
1 DIS 2007, Munich, April 19, 2007 Aram Kotzinian Beyond Collins and Sivers: further measurements of the target transverse spin-dependent azimuthal asymmetries.
Studies of the transverse structure of the nucleon at JLab Marco Mirazita INFN – Laboratori Nazionali di Frascati INPC2013 – Firenze, 2-7 June
1 CLAS-eg1 pol.-proton analysis H.Avakian (JLab) semi-SANE Collaboration Meeting April 21, 2005.
Single Target Spin Asymmetries and GPDs Jian-ping Chen, Jefferson Lab, Virginia, USA SSA Workshop, BNL, June 1-3, 2005 Nucleon structure and GPDs DVCS.
18 Oct 2010 / PSHP / Frascati E. Cisbani: JLab/Hall A April Frascati Probing Strangeness in Hard Processes Kaon SIDIS experiments.
Example 3 Slides for PAC. Measurement of Target Single Spin Asymmetry in Semi-Inclusive Deep Inelastic Scattering with 3 He Map Collins moments to provide.
Measurements of quark transversity and orbital motion in hard scattering Yoshiyuki Miyachi Tokyo Institute of Technology.
Higher twist effects in polarized experiments
New results on SIDIS SSA from JLab
Presentation transcript:

New results on Neutron Single Target Spin Asymmetries from Transversely polarized 3 He target at Jlab Nilanga Liyanage, University of Virginia  Recent SSA Results from JLab Hall A with a Transversely Polarized 3 He (n) Collins/Sivers Asymmetries on pi+/pi- (published) Worm-gear II Asymmetries on pi+/pi- (published)  New Preliminary SSA Results from JLab Hall A with a Transversely polarized 3 He (n) Collins/Sivers Asymmetries in K+/K- Pretzelosity Asymmetries on  +/  - Inclusive hadron SSA Inclusive electron SSA (DIS, QE)  TMD study at JLab 12 GeV in Hall A: SoLID Program on SSA/TMDs: 3 Approved Experiments on 3 He and p Acknowledgement: thanks to J.P Chen and Jefferson lab Transversity collaboration for some slides

Unpolarized Structure Function F 2 Bjorken Scaling Scaling Violation Gluon radiation – QCD evolution NLO: Next-to-Leading-Order One of the best experimental tests of QCD

Parton Distribution Functions (CTEQ6) JHEP 1001: 109 (2010)

Polarized Structure functions

Polarized Parton Distributions DSSV, PRL101, (2008)

3-D Structure Generalized Parton Distributions Transverse Momentum-Dependent Distributions The next Frontier

TMDs 2+1 D picture in momentum space Bacchetta, Conti, Radici GPDs 2+1 D picture in impact-parameter space QCDSF collaboration Towards Imaging - Two Approaches intrinsic transverse motion spin-orbit correlations- relate to OAM non-trivial factorization accessible in SIDIS (and Drell-Yan) collinear but long. momentum transfer indicator of OAM; access to Ji’s total J q,g existing factorization proofs DVCS, exclusive vector-meson production

Transverse Spin: Transversity Three twist-2 quark distributions: Momentum distributions: q(x,Q 2 ) = q ↑ (x) + q ↓ (x) Longitudinal spin distributions: Δq(x,Q 2 ) = q ↑ (x) - q ↓ (x) Transversity distributions: δq(x,Q 2 ) = q ┴ (x) - q ┬ (x) It takes two chiral-odd objects to measure transversity Semi-inclusive DIS Chiral-odd distributions function (transversity) Chiral-odd fragmentation function (Collins function) TMDs: (without integrating over P T ) Distribution functions depends on x, k ┴ and Q 2 : δq, f 1T ┴ (x, k ┴,Q 2 ), … Fragmentation functions depends on z, p ┴ and Q 2 : D, H 1 (x,p ┴,Q 2 ) Measured asymmetries depends on x, z, P ┴ and Q 2 : Collins, Sivers, … (k ┴, p ┴ and P ┴ are related)

Leading-Twist TMD PDFs f 1 = f 1T  = Sivers Helicity g 1 = h1 =h1 = Transversity h1 =h1 =Boer-Mulders h 1T  = Pretzelosity g 1T = Worm Gear h 1L  = Worm Gear : Probed with transversely pol target HERMES, COMPASS, JLab E Nucleon Spin Quark Spin

Separation of Collins, Sivers and pretzelocity effects through angular dependence

Operated by the Southeastern Universities Research Association for the U.S. Department of Energy Thomas Jefferson National Accelerator Facility COMPASS Sivers asymmetry 2010 data x > region - comparison with HERMES results

E06 ‑ 010 Experiment Spokespersons: Chen/Evaristo/Gao/Jiang/Peng First measurement on n ( 3 He) Polarized 3 He Target Polarized Electron Beam, 5.9 GeV BigBite at 30º as Electron Arm – P e = 0.7 ~ 2.2 GeV/c HRS L at 16º as Hadron Arm – P h = 2.35 GeV/c – Excellent PID for  /K/p 7 PhD Thesis Students (All graduated) + new students 12 Beam Polarimetry (Møller + Compton) Luminosity Monitor

Published Results (I) from JLab Hall A E with a Transversely Polarized 3 He (n) Collins/Sivers Asymmetries on  +/  - X. Qian at al., PRL 107:072003(2011)

E He Target Single-Spin Asymmetry in SIDIS 3 He Sivers SSA: negative for π +, 3 He Collins SSA small Non-zero at highest x for  + Blue band: model (fitting) uncertainties Red band: other systematic uncertainties

Results on Neutron Collins asymmetries are not large, except at x=0.34 Sivers negative Blue band: model (fitting) uncertainties Red band: other systematic uncertainties

Published Results (II) from JLab Hall A E with a Transversely Polarized 3 He (n) Worm-Gear II: Trans-helicity on  +/  - J. Huang et al., PRL. 108, (2012).

Asymmetry A LT Result 3 He A LT : Positive for  - To leading twist:

–Corrected for proton dilution, f p –Predicted proton asymmetry contribution < 1.5% (π + ), 0.6% (π - ) –Dominated by L=0 (S) and L=1 (P) interference Consist w/ model in signs, suggest larger asymmetry Neutron A LT Extraction Trans-helicity

Preliminary New Results (I) from JLab Hall A E with a Transversely Polarized 3 He (n) Collins/Sivers Asymmetries on K+/K- Analysis by Y. Zhao (USTC), Y. Wang (UIUC)

Kaon PID by Coincidence time of flight Cross checked with RICH results K+/π+ ratio: ~5% K-/π- ratio: ~1%

Preliminary K+/K- Collins and Sivers Asymmetries on 3 He

Preliminary New Results (II) from JLab Hall A E with a Transversely Polarized 3 He (n) Pretzelosity on  +/  - Analysis by Y. Zhang (Lanzhou) and X. Qian (Caltech)

Pretzelosity on  +/  - Preliminary

Extracted Results on Neutron

Preliminary New Results (III)from JLab Hall A E with a polarized 3 He (n) Inclusive Electron SSA Analysis by J. Katech(W&M), X. Qian (Caltech)

Inclusive Target Single Spin Asymmetry: DIS 3 He θ e-e- Unpolarized e - beam incident on 3 He target polarized normal to the electron scattering plane. However, A y =0 at Born level,  sensitive to physics at order α 2 ; two-photon exchange. In DIS case: related to integral of Sivers Physics Importance discussed in A. Metz and M. Schlegel’s talks (Tuesday)

Inclusive Target Single-Spin Asymmetry Extracted neutron SSA Vertically polarized target

Future: TMD study with SoLID at 12 GeV JLab Hall A Precision 4-D mapping of Collins/Sivers/Pretzelosity Worm-Gear I/II with Polarized 3 He (Neutron) and Proton

JLab 12 GeV Era: Precision Study of TMDs From exploration to precision study with 12 GeV JLab Transversity: fundamental PDFs, tensor charge TMDs: 3-d momentum structure of the nucleon  Quark orbital angular momentum Multi-dimensional mapping of TMDs 4-d (x,z,P ┴,Q 2 ) Multi-facilities, global effort Precision  high statistics high luminosity and large acceptance

SoLID for SIDIS/PVDIS with 12 GeV JLab Exciting physics program: Five approved experiments: three SIDIS “A rated”, one PVDIS “A rated”, one J/Psi “A- rated” International collaboration: eight countries and 50+ institutions CLEOII Magnet GEMs for tracking Cherenkov and EM Calorimeter for electron PID Heavy Gas Cherenkov and MRPC (TOF) for pion PID

E /E , Both Approved with “A” Rating Mapping of Collins(Sivers) Asymmetries with SoLID Both  + and  - Precision Map in region x( ) z( ) Q 2 (1-8) P T (0-1.6) <10% d quark tensor charge Collins Asymmetry

Map Collins and Sivers asymmetries in 4-D (x, z, Q 2, P T )

Expected Improvement: Sivers Function Significant Improvement in the valence quark (high-x) region Illustrated in a model fit (from A. Prokudin) f 1T  =

E : Worm-gear functions (“A’ rating: ) Spokespersons: Chen/Huang/Qiang/Yan Dominated by real part of interference between L=0 (S) and L=1 (P) states No GPD correspondence Lattice QCD -> Dipole Shift in mom. space. Model Calculations -> h 1L  =? -g 1T. h 1L  = g 1T = Longi-transversity Trans-helicity Center of points:

Future: TMD study with SoLID at 12 GeV JLab Hall A New Letter Of Intent: Dihadron Production

Measure Transversity via Dihadron with SoLID LoI submitted to Jlab PAC 40, J. Zhang, A. Courtoy, et al. Wide x b and Q 2 coverages Projected Statistics error for one (M ,z  ) bin, integrated over all y and Q 2. Precision dihadron (  +/  -) production on a transversely polarized 3 He (n) Extract transversity on neutron Provide crucial inputs for flavor separation of transversity

Projected Statistics Error Hall A, SoLID program Polarized 3 He target, (~60% polarization) Lumi=10 36 (n)/s/cm 2 Wide x b and Q 2 coverages Bin central values labeld on axises 4-d (x b, Q 2, Z  +  -,M  +  - ) mapping Z scale (color) represent stat. error

Summary SSA and TMD study have been exciting and fruitful Recent and Preliminary Results from JLab Hall A with a transversely polarized 3 He (n) target Collins/Sivers asymmetries for  +/  -/K+/K- Pretzelosity on pi+/pi- SSA: inclusive hadron SSA: inclusive electron DIS SSA: inclusive electron (Quasi)Elastic Planned SoLID program with JLab12 Precision 4-d mapping of TMD asymmetries