Topology System Uli Schäfer 1 B.Bauß, V.Büscher, W.Ji, U.Schäfer, A.Reiß, E.Simioni, S.Tapprogge, V.Wenzel.

Slides:



Advertisements
Similar presentations
GOLD Generic Opto Link Demonstrator Uli Schäfer 1.
Advertisements

JFEX Uli Schäfer 1 Mainz. Jet processing Phase-0 jet system consisting of Pre-Processor Analogue signal conditioning Digitization Digital signal processing.
JFEX Uli Schäfer 1 Uli Intro / overview / issues Draft, will change !!!! Some questions flagged.
GOLD Generic Opto Link Demonstrator Uli Schäfer 1.
Phase-0 Topological Processor Uli Schäfer Johannes Gutenberg-Universität Mainz Uli Schäfer 1.
L1Calo – towards phase II Mainz upgraders : B.Bauss, V.Büscher, R.Degele, A.Ebling, W.Ji, C.Meyer, S.Moritz, U.Schäfer, C.Schröder, E.Simioni, S.Tapprogge.
Programmable logic devices / tools Programmable logic devices are digital logic devices, providing combinatorial logic (gates, look-up tables) and flip-flops.
High-speed optical links and processors for the ATLAS Level-1 Calorimeter Trigger upgrade B.Bauss, V.Büscher, R.Degele, A.Ebling, W.Ji, C.Meyer, S.Moritz,
ATLAS L1 Calorimeter Trigger Upgrade - Uli Schäfer, MZ -
GOLD Status and Phase-1 Plans Andi E. & Uli S. Uli Schäfer 1.
Uli Schäfer 1 BLT – status – plans BLT – backplane and link tester Recent backplane test results Test plans – week June 15.
Phase-0 topological processor Uli Schäfer Johannes Gutenberg-Universität Mainz Uli Schäfer 1.
Level-1 Topology Processor for Phase 0/1 - Hardware Studies and Plans - Uli Schäfer Johannes Gutenberg-Universität Mainz Uli Schäfer 1.
Phase-1 with new JEP Uli Schäfer Johannes Gutenberg-Universität Mainz Uli Schäfer 1.
JEM upgrades and optical data transmission to FEX for Phase 1 Andi E. & Uli S. Uli Schäfer 1.
Uli Schäfer 1 S-L1Calo upstream links architecture -- interfaces -- technology.
Uli Schäfer 1 (Not just) Backplane transmission options Upgrade will always be in 5 years time.
Phase-1 with new JEP Uli Schäfer Johannes Gutenberg-Universität Mainz Uli Schäfer 1.
Uli Schäfer 1 (Not just) Backplane transmission options.
S. Silverstein For ATLAS TDAQ Level-1 Trigger updates for Phase 1.
Samuel Silverstein Stockholm University L1Calo upgrade hardware planning + Overview of current concept + Recent work, results.
Uli Schäfer 1 (Not just) Backplane transmission options Uli, Sam, Yuri.
Uli Schäfer 1 JEM1: Status and plans JEM1.1 Status Plans.
Uli Schäfer 1 JEM1: Status and plans Hardware status Firmware status Plans.
Hardware status GOLD Generic Opto Link Demonstrator Uli Schäfer 1.
Uli Schäfer 1 JEM Test Strategies Current plan: no JTAG tests at R&S  initial tests done at MZ Power-up / currents Connectivity tests (JTAG) per (daughter)
Uli Schäfer JEM hardware / test JEM0 test programme Mainz standalone RAL sub-slice test JEM re-design Heidelberg slice test.
S. Silverstein For ATLAS TDAQ Level-1 Trigger upgrade for Phase 1.
Uli Schäfer 1 JEM1: Status and plans power Jet Sum R S T U VME CC RM ACE CAN Flash TTC JEM1.0 status JEM1.1 Plans.
Uli Schäfer 1 (Not just) Backplane transmission options.
Samuel Silverstein Stockholm University L1Calo upgrade discussion Overview Issues  Latency  Rates  Schedule Proposed upgrade strategy R&D.
JFEX Uli Schäfer 1 Mainz. Jet processing Phase-0 jet system consisting of Pre-Processor Analogue signal conditioning Digitization Digital signal processing.
FEX Uli Schäfer, Mainz 1 L1Calo For more eFEX details see indico.cern.ch/getFile.py/access?contribId=73&sessionId=51&resId=0&materialId=slides&confId=
Status and planning of the CMX Philippe Laurens for the MSU group Level-1 Calorimeter Trigger General Meeting, CERN May 24, 2012.
Uli Intro / overview / issues
JEP HW status and FW integration plans Uli Schaefer and Pawel Plucinski Johannes-Gutenberg Universitaet Mainz Stockholm University.
JFEX Uli Schäfer 1 Mainz Logos ? jFEX (inc. specific software/firmware & Tilecal input signal, options) 30'
Atlas L1Calo CMX Card CMX is upgrade of CMM with higher capacity 1)Inputs from JEM or CPM modules – 40 → 160Mbps (400 signals) 2)Crate CMX to System CMX.
L1Topo Status & Plans Uli Schäfer 1 B.Bauß, V.Büscher, W.Ji, S.Krause, S.Moritz, U.Schäfer, A.Reiß, E.Simioni, S.Tapprogge, V.Wenzel.
Hardware status GOLD Generic Opto Link Demonstrator Assess the use of optical backplane connectivity for use on L1Calo Uli Schäfer 1.
L1Topo-phase0 Uli Schäfer 1. Topo GOLD successfully used to explore technologies and initially verify 6.4Gb/s link integrity over moderate length electrical.
JFEX baseline Uli Schäfer 1 Uli. Intro: L1Calo Phase-1 System / Jets Uli Schäfer 2 CPM JEM CMX Hub L1Topo ROD JMM PPR From Digital Processing System CPM.
CMX status and plans Yuri Ermoline for the MSU group Level-1 Calorimeter Trigger Joint Meeting CERN, October 2012,
CMX status Yuri Ermoline for the MSU group Mini-TDAQ week, CERN, 9-11 July 2012,
Status and planning of the CMX Wojtek Fedorko for the MSU group TDAQ Week, CERN April , 2012.
S. Rave, U. Schäfer For L1Calo Mainz
CMX Hardware Overview Chip Brock, Dan Edmunds, Philippe Yuri Wojciech Michigan State University 12-May-2014.
Uli Schäfer 1 From L1Calo to S-L1Calo algorithms – architecture - technologies.
ATLAS Trigger / current L1Calo Uli Schäfer 1 Jet/Energy module calo µ CTP L1.
JFEX Uli Schäfer 1. Constraints & Numerology Assumption: one crate, several modules. Each module covers full phi, limited eta range Data sharing with.
CMX Hardware Overview Chip Brock, Dan Edmunds, Philippe Yuri Wojciech Michigan State University 19-May-2014.
The ATLAS Global Trigger Processor U. Schäfer Phase-2 Upgrade Uli Schäfer 1.
JFEX Uli Schäfer 1 Mainz. L1Calo Phase-1 System Uli Schäfer 2 CPM JEM CMX Hub L1Topo ROD JMM PPR From Digital Processing System CPM JEM CMX Hub L1Topo.
Hardware status GOLD Generic Opto Link Demonstrator Uli Schäfer 1.
JFEX Uli Schäfer 1 Mainz. L1Calo Phase-1 System Uli Schäfer 2 CPM JEM CMX Hub L1Topo ROD JMM PPR From Digital Processing System CPM JEM CMX Hub L1Topo.
L1Topo post review Uli Schäfer 1 Observations, options, effort, plans Uli.
GOLD TESTS (Virtex-6) ● Jitter analysis on cleaned TTC clock ( σ = 2.9 ps) ● Signal integrity: sampled in several positions along the chain ● MGT and o/e.
Samuel Silverstein, SYSF ATLAS calorimeter trigger upgrade work Overview Upgrade to PreProcessor MCM Topological trigger.
CMX: Update on status and planning Yuri Ermoline, Wojciech Dan Edmunds, Philippe Laurens, Chip Michigan State University 7-Mar-2012.
L1Topo Hardware Status & Plans Uli Schäfer 1 B.Bauß, V.Büscher, U.Schäfer, E.Simioni, S.Tapprogge, A. Vogel.
Uli Schäfer 1 Mainz R&D activities. Uli Schäfer 2 MZ R&D BLT has been built and tested (backplane transmission only). A few minor issues were found. Possible.
Phase2 Level-0 Calo Trigger ● Phase 2 Overview: L0 and L1 ● L0Calo Functionality ● Interfaces to calo RODs ● Interfaces to L0Topo Murrough Landon 27 June.
ATLAS calorimeter and topological trigger upgrades for Phase 1
L1Calo Phase-1 architechure
L1Calo upgrade discussion
ATLAS L1Calo Phase2 Upgrade
Possibilities for CPM firmware upgrade
Run-2  Phase-1  Phase-2 Uli / Mainz
CMX Status and News - post PRR -
(Not just) Backplane transmission options
Presentation transcript:

Topology System Uli Schäfer 1 B.Bauß, V.Büscher, W.Ji, U.Schäfer, A.Reiß, E.Simioni, S.Tapprogge, V.Wenzel

Topology 2013/14 (RTDP) Uli Schäfer 2 Topo Processor Muons Legacy electrical links Cluster Processor CMX CTP Core Jet/Energy Processor CMX From PPr / nMCMs 6.4Gb/s fibre bundles Fibre & 32 electrical LVDS links 160 / 12 /

Topology Processor To provide a maximum of flexibility for applying topological trigger criteria All Level-1 topo trigger signals into a single module Allow to correlate all trigger object types within full solid angle e/m clusters, tau Jets Missing Energy Small volume of muon signals from 2014 Ample logic resources to run many algorithms in parallel Option to run separate algorithms on more than one topology module in parallel Uli Schäfer 3

Topo processor features AdvancedTCA form factor High input bandwidth 6.4Gb/s baseline input rate, 2014) Electrons, tau, jets, MET : 553 Gb/s Muons 267 Gb/s Total aggregate bandwidth 820 Gb/s Low processing latency on real-time path On-FPGA multi-gigabit links (MGTs) High density 12-channel opto transceivers (miniPODs) Fibre bundles from L1Calo mergers (CMXes) Fibre bundle and low latency LVDS into CTPcore Well prepared for phase 1: accept line rates above 6.4Gb/s from future processors (FEXes, muons) Employ zero suppression Uli Schäfer 4

Topology Processor Schedule Uli Schäfer Technology Demonstrator (BLT) Functional Demonstrator (GOLD) Prototype Installation GOLD delivery Production Completed Production module Prototype production Review June 12 (report : see EDMS)

Functional Demonstrator : “GOLD” Fibre input from the backplane (MTP-CPI connectors) 10Gb/s 12-channel industry standard o/e converters on mezzanine High performance FPGAs (XC6VLX240T) with multiple 6.4Gb/s transceivers Real-time output via opto links on the front panel Uli Schäfer 6

GOLD test results and plans Characterization of Optical Links ● “MGT/AVAGO” settings Bit Error Rate (BER) < 10 / 12 channels (conditions on GOLD are tougher, mezzanine connectors and long traces) Uli Schäfer 7

GOLD test results and plans Current Algorithm Implementation Efforts ● Implementation of dphi Leading Jet Algorithm exists for simulation and hardware in the GOLD ● First estimate of logic usage: about 10% of (small) XC6VLX240T ● Implement toy data source for dphi alg. Determine Latency Logic Usage PMA loop back test ● Prepare existing FW for Virtex-7 as far as possible (L1Topo) ● We continue to use GOLD while prototype is being built Uli Schäfer 8

L1Topo prototype - post review Uli Schäfer 9 From CMX To CTP Design goal : Keep compact for signal integrity, use largest available FPGAs (processing power, input bandwidth)  require: 2 processor FPGAs A, B: XC7V690T (XC7V485T initially) High-density mid- board o/e converters (miniPOD) High density fibre plant Module control Kintex FPGA (C) Zynq on mezzanine Form factor : advancedTCA

Post review : some system level aspects Require ATCA crate, probably physically close to CTP Full ATCA compliance including IPMC and base interface on mezzanine module Real-time path: Baseline 6.4Gb/s inputs, flexible wrt. rate selection, due to multiple reference clock trees No on-module data duplication, incoming data might have to be duplicated at source, if required Low latency LVDS path to CTP to complement optical path Module control via VMEbus bridge during initial module development phase via embedded processor (Zynq) / Ethernet / base interface eventually DAQ and ROI interface up to 12 opto fibres (miniPOD) Hardware to support both L1Calo style ROD interface, and embedded ROD / S-Link interface Uli Schäfer 10

Hardware status - floor plan, so far… Uli Schäfer 11 RTDP: 48-way opto connectors 14 miniPODs / optical in add clock trees to support multiple input rates 2 processors XC7V690T To CTP: miniPOD and low latency LVDS Control etc.: XC7K325T and XC7Z0XX Add SD-card for configuration and boot Add memory Some components not yet placed : CTP / spare PODs…

… and in 3-d Uli Schäfer 12

Options and Effort Impact of architectural decisions (as discussed at review) on f/w and s/w: Embedded ROD vs. use of L1Calo ROD (pre phase 1) Effort required for embedded ROD cannot be quantified yet JEM (L1Calo) DAQ interface being converted to L1Topo needs (low effort) DAQ bandwidth dominated by CMX data : Zero suppressed 100kHz L1A  ~1/2 L1Calo ROD channel worth of data per bunch tick being read out Ethernet based control / embedded processor / IPbus Basic access via serialised VMEbus is available anyway, is in use on GOLD “IPbus” or embedded processor supported by h/w, require s/w & f/w effort Firmware : Real-time code being developed on GOLD (MGT and some topo algorithms) Register map DAQ Diagnostics and monitoring (playback / spy functionality) IPbus firmware (for FPGA-based Ethernet option) Software : Some basic software access for h/w tests HDMC register description (in case of register mapped access) General software framework for Ethernet based control (Embedded ARM/Linux or IPbus specific) and IPMC controller software S/W development eased considerably if done within L1Calo infrastructure Uli Schäfer 13

Summary Uli Schäfer 14 L1Topo functional demonstrator (GOLD): High-speed o/e data paths successfully tested Parameters optimized at 6.4 Gb/s Large bit-error free windows Further optimization on high speed link parameters and performance (latency) of algorithms in hardware on-going L1Topo Prototype: Design ready, reviewed, schematic capture in progress A few post-review modifications Some mods go onto mezzanine module Critical components ordered / expected on time for production Considerable effort to go into s/w, f/w, system-level integration On schedule for installation during shutdown 13/14