Challenges in edge modeling IPP-Teilinstitut Greifswald, EURATOM Association, Wendelsteinstraße 1, D-17491 Greifswald, Germany Outline: 1. Motivation 2.

Slides:



Advertisements
Similar presentations
Max-Planck-Institut für Plasmaphysik EURATOM Assoziation Interaction of nitrogen plasmas with tungsten Klaus Schmid, A. Manhard, Ch. Linsmeier, A. Wiltner,
Advertisements

M. Reinelt, K. Schmid, K. Krieger SEWG High-Z Ljubljana Max-Planck-Institut für Plasmaphysik EURATOM Association, Garching b. München, Germany.
Vienna University of Technology (TU Wien) slides provided by F. Aumayr EURATOM – ÖAW: Contribution of the Austrian Fusion Association 2006 Innsbruck University.
C. Björkas, K. Vörtler and K. Nordlund Department of Physics, University of Helsinki Joint TFE-SEWG - Material Migration and Material Mixing meeting MD.
Max-Planck-Institut für Plasmaphysik EURATOM Assoziation K. Schmid SEWG meeting on mixed materials Parameter studies for the Be-W interaction Klaus Schmid.
17. April 2015 Mitglied der Helmholtz-Gemeinschaft Application of a multiscale transport model for magnetized plasmas in cylindrical configuration Workshop.
Fyzika tokamaků1: Úvod, opakování1 Tokamak Physics Jan Mlynář 9. Plasma edge and plasma-wall interaction Limiters, divertors, basic SOL model, blobs, modes.
6th Japan Korea workshop July 2011, NIFS, Toki-city Japan Edge impurity transport study in stochastic layer of LHD and scrape-off layer of HL-2A.
Conference on Computational Physics 30 August 2006 Transport Simulation for the Scrape-Off Layer and Divertor Plasmas in KSTAR Tokamak S. S. Kim and S.
1 ITPA - DSOL - TorontoS. Brezinsek TEC Hydrocarbon spectroscopy on EU tokamaks S. Brezinsek on behalf of the EU task force for Plasma-Wall Interaction.
SUGGESTED DIII-D RESEARCH FOCUS ON PEDESTAL/BOUNDARY PHYSICS Bill Stacey Georgia Tech Presented at DIII-D Planning Meeting
1 EFFECTS OF CARBON REDEPOSITION ON TUNGSTEN UNDER HIGH-FLUX, LOW ENERGY Ar ION IRRADITAION AT ELEVATED TEMPERATURE Lithuanian Energy Institute, Lithuania.
Univ. Madeira Dept. Física Universidade da Madeira Departamento de Física COST 529 Meeting Eindhoven, March 31st, 2006 project Modes of current transfer.
Iain D. Boyd University of Michigan Modeling of Ion Sputtering and Product Transport.
Two Approaches to Multiphysics Modeling Sun, Yongqi FAU Erlangen-Nürnberg.
Edge plasma physics – a bridge between several disciplines Ralf Schneider IPP-Teilinstitut Greifswald, EURATOM Association, Wendelsteinstraße 1, D
FLUORINATION WITH REMOTE INDUCTIVELY COUPLED PLASMAS SUSTAINED IN Ar/F 2 AND Ar/NF 3 GAS MIXTURES* Sang-Heon Song a) and Mark J. Kushner b) a) Department.
Chamber Dynamic Response Modeling Zoran Dragojlovic.
WAFER EDGE EFFECTS CONSIDERING ION INERTIA IN CAPACITIVELY COUPLED DISCHARGES* Natalia Yu. Babaeva and Mark J. Kushner Iowa State University Department.
Max-Planck-Institut für Plasmaphysik, EURATOM Association Computational Plasmaphysics Ralf Schneider Max-Planck-Institut für Plasmaphysik, Euratom-IPP.
GTC Status: Physics Capabilities & Recent Applications Y. Xiao for GTC team UC Irvine.
Deuterium retention mechanisms in beryllium M. Reinelt, Ch. Linsmeier Max-Planck-Institut für Plasmaphysik EURATOM Association, Garching b. München, Germany.
Introduction to Plasma- Surface Interactions G M McCracken Hefei, October 2007.
N EOCLASSICAL T OROIDAL A NGULAR M OMENTUM T RANSPORT IN A R OTATING I MPURE P LASMA S. Newton & P. Helander This work was funded jointly by EURATOM and.
Molecular Dynamics Simulations of Cascades in Nuclear Graphite H. J. Christie, D. L. Roach, D. K. Ross The University of Salford, UK I. Suarez-Martinez,
Measurement and modeling of hydrogenic retention in molybdenum with the DIONISOS experiment G.M. Wright University of Wisconsin-Madison, FOM – Institute.
ITPA, DivSOL, May 2007: Coster et al Coster, Bonnin, Corrigan, Wiesen, Chankin, Zagorski, Owen, Rognlien, Kukushkin, Fundamenski, … With contributions.
Nam-Sik Yoon (Chungbuk National University of Korea) A Dust Charging Model under Tokamak Discharge Conditions 6 th Japan-Korea Workshop on Theory and Simulation.
Model prediction of impurity retention in ergodic layer and comparison with edge carbon emission in LHD (Impurity retention in the ergodic layer of LHD)
PIC simulations of the propagation of type-1 ELM-produced energetic particles on the SOL of JET D. Tskhakaya 1, *, A. Loarte 2, S. Kuhn 1, and W. Fundamenski.
Edge Localized Modes propagation and fluctuations in the JET SOL region presented by Bruno Gonçalves EURATOM/IST, Portugal.
Challenging problems in kinetic simulation of turbulence and transport in tokamaks Yang Chen Center for Integrated Plasma Studies University of Colorado.
ChE 553 Lecture 12 Theory Of Sticking 1. Objective Develop a qualitative understanding of sticking Go over some models for the process 2.
TEC Trilateral Euregio Cluster 1 S. Brezinsek Spectroscopic determination of carbon erosion yields and the composition of chemically eroded molecular carbon.
Discussions and Summary for Session 1 ‘Transport and Confinement in Burning Plasmas’ Yukitoshi MIURA JAERI Naka IEA Large Tokamak Workshop (W60) Burning.
Internal partition function calculated with where N is the particle density (cm 3 ) Influence of Electronically Excited States on Thermodynamic Properties.
Introduction to Plasma- Surface Interactions Lecture 3 Atomic and Molecular Processes.
Transport of deuterium - tritium neutrals in ITER divertor M. Z. Tokar and V.Kotov Plasma and neutral gas in ITER divertor will be mixed of deuterium and.
14 Oct. 2009, S. Masuzaki 1/18 Edge Heat Transport in the Helical Divertor Configuration in LHD S. Masuzaki, M. Kobayashi, T. Murase, T. Morisaki, N. Ohyabu,
Introduction of 9th ITPA Meeting, Divertor & SOL and PEDESTAL Jiansheng Hu
Max-Planck-Institut für Plasmaphysik, EURATOM Association Different numerical approaches to 3D transport modelling of fusion devices Alexander Kalentyev.
SLM 2/29/2000 WAH 13 Mar NBI Driven Neoclassical Effects W. A. Houlberg ORNL K.C. Shaing, J.D. Callen U. Wis-Madison NSTX Meeting 25 March 2002.
Edge-SOL Plasma Transport Simulation for the KSTAR
Max-Planck-Institut für Plasmaphysik CRP on ‘Atomic and Molecular Data for Plasma Modelling’, IAEA, Vienna26-28 September 2005 Compilation and Extension.
Erosion/redeposition analysis of CMOD Molybdenum divertor and NSTX Liquid Lithium Divertor J.N. Brooks, J.P. Allain Purdue University PFC Meeting MIT,
CMS HIP Plasma-Wall Interactions – Part I: In Fusion Reactors Helga Timkó Department of Physics University of Helsinki Finland.
Mochalskyy Serhiy NI modeling workshop, Chiba, Japan, 2013 Recent state and progress in negative ion modeling by means ONIX code Mochalskyy Serhiy 1, Dirk.
CMS HIP Plasma-Wall Interactions – Part II: In Linear Colliders Helga Timkó Department of Physics University of Helsinki Finland.
MHD and Kinetics Workshop February 2008 Magnetic reconnection in solar theory: MHD vs Kinetics Philippa Browning, Jodrell Bank Centre for Astrophysics,
Role of thermal instabilities and anomalous transport in the density limit M.Z.Tokar, F.A.Kelly, Y.Liang, X.Loozen Institut für Plasmaphysik, Forschungszentrum.
Transport analysis of the LHD plasma using the integrated code TASK3D A. Wakasa, A. Fukuyama, S. Murakami, a) C.D. Beidler, a) H. Maassberg, b) M. Yokoyama,
Introduction to Plasma-Surface Interactions Lecture 5 Sputtering.
Erosion and Deposition in Tokamaks Christian Schulz Institut für Energieforschung - Plasmaphysik Assoziation EURATOM- Forschungszentrum Jülich Trilateral.
1 ITC-22, November 2012, Toki, Japan 1 Modelling of impurity transport, erosion and redeposition in fusion devices: applications of the ERO code A. Kirschner.
Non-local Transport of Strongly Coupled Plasmas Satoshi Hamaguchi, Tomoyasu Saigo, and August Wierling Department of Fundamental Energy Science, Kyoto.
1 Nanoscale Modeling and Computational Infrastructure ___________________________ Ananth Grama Professor of Computer Science, Associate Director, PRISM.
of multispecies edge plasmas
Generation of Toroidal Rotation by Gas Puffing
Finite difference code for 3D edge modelling
E3D: status report and application to DIII-D
Gyrofluid Turbulence Modeling of the Linear
Intro to Global Modeling and Prediction Session
TEM – Lecture 2 Basic concepts of heat transfer:
Atomistic materials simulations at The DoE NNSA/PSAAP PRISM Center
Studies of impurity migration in TEXTOR by local tracer injection
Mikhail Z. Tokar and Mikhail Koltunov
Multiscale modeling of hydrogen isotope transport in porous graphite
XGC simulation of CMOD edge plasmas
V. Rozhansky1, E. Kaveeva1, I. Veselova1, S. Voskoboynikov1, D
Benchmark Quantum Monte Carlo Calculations for Carbon and Hydrocarbon Species James B. Anderson, Department of Chemistry, Pennsylvania State University.
Presentation transcript:

Challenges in edge modeling IPP-Teilinstitut Greifswald, EURATOM Association, Wendelsteinstraße 1, D Greifswald, Germany Outline: 1. Motivation 2. Plasma model 3. Neutral model 4. Turbulence 5. Multi-scale strategies 6. Plasma-wall interaction 7. Remarks on Integrated Modeling Max-Planck-Institut für Plasmaphysik, EURATOM Association Ralf Schneider

Motivation Max-Planck-Institut für Plasmaphysik, EURATOM Association ultimate goal: predictive quality for tokamaks and stellarators (‘integrated modeling’) What are the problems to be solved in edge modeling? Which strategies should be followed? What are the consequences of that?

Motivation Max-Planck-Institut für Plasmaphysik, EURATOM Association edge modeling made considerable progress: yes! but: long list of topics Summary report of the American Divertor and Edge Plasma Theory Working Group, J. Neuhauser: ITER Workshop

Motivation Max-Planck-Institut für Plasmaphysik, EURATOM Association edge modeling made considerable progress: yes! but: long list of topics A. Kukushkin: ITER meeting 1993

Plasma edge physics Max-Planck-Institut für Plasmaphysik, EURATOM Association

drifts and currents: open questions Bruce Scott: Physics of Plasmas 10 (2003) 963 only anomalous viscosity – either Reynolds stress or correction from gyroviscosity – can create anomalous transport anomalous resistivity cannot create anomalous transport or radial electric field, because resistivity is a momentum conserving friction between electrons and ions -> classical equation for the potential (div j = 0) numerical performance: time-step limits for complete Newton solvers (UEDGE) and equation sub-cycling (B2); semi-implicit solvers? (Zagorski et al.; see also talk by A. Kalyentev) Plasma models

Max-Planck-Institut für Plasmaphysik, EURATOM Association Plasma models

Max-Planck-Institut für Plasmaphysik, EURATOM Association Plasma models

Max-Planck-Institut für Plasmaphysik, EURATOM Association Plasma models

Max-Planck-Institut für Plasmaphysik, EURATOM Association kinetic corrections: fluid corrections or coupling with kinetics Plasma models Coupling with kinetic code (BGK): 2 kinetic equations for thermal conductivity and viscosity (Kukushkin, Runov, Igitkhanov 1994)

Max-Planck-Institut für Plasmaphysik, EURATOM Association 3D and ergodic effects (see also talk by A. Kalyentev) Plasma models

Max-Planck-Institut für Plasmaphysik, EURATOM Association Monte Carlo vs. fluid: different level of accuracy and complexity; flux limits necessary for making the fluid model realistic Neutral models D. Coster et al., EPS2005 atomic and molecular data: below 5 eV??

Molecular physics Max-Planck-Institut für Plasmaphysik, EURATOM Association Franck-Condon atoms: low plasma temperature -> mostly molecules reflected from saturated walls

MAR Max-Planck-Institut für Plasmaphysik, EURATOM Association

MAD and MAI Max-Planck-Institut für Plasmaphysik, EURATOM Association

THE central problem Turbulence

Max-Planck-Institut für Plasmaphysik, EURATOM Association fitting of transport coefficients Turbulence

Max-Planck-Institut für Plasmaphysik, EURATOM Association fitting of transport coefficients Turbulence physics-based scaling full coupling

Multi-scales sputtered and backscattered species and fluxes Plasma-wall interaction Molecular dynamics Binary collision approximation Kinetic Monte Carlo Kinetic model Fluid model impinging particle and energy fluxes Max-Planck-Institut für Plasmaphysik, EURATOM Association

Chemical Erosion of carbon by hydrogen produces hydrocarbon species (C x H y ) Dissociation & Recombination's leads to amorphous hydrocarbon layer formation Carbon acts as sponge for hydrogen Tritium is retained by co-deposition with carbon, on the plasma facing sides or on remote areas. Hydrogen G F Counsell, Plasma Sources Sci. Technol. 11 (2002) A80–A85 Hydrocarbon-codeposition Max-Planck-Institut für Plasmaphysik, EURATOM Association

2eV CH 3 onto amorphous hydrocarbon Classical MD Max-Planck-Institut für Plasmaphysik, EURATOM Association MD studies of interaction of hydrocarbons with amorphous carbon: empricial Brenner potential reflection coefficients of hydrocarbons on amorphous hydrocarbon (collaboration with K. Nordlund, Univ. Helsinki, U. v. Toussaint, IPP Garching, D. Naujoks, IPP Greifswald) PhDs (HGF funded), Amit Raj Sharma, Abha Rai Energy (eV) CH x Reflection coefficient CH CH 2 CH 3 CH 4

Max-Planck-Institut für Plasmaphysik, EURATOM Association Multi-scale strategies WWW Uppsala Univ. Sweden Classification: A) Microscale info. local B) Microscale info. global C) Combination of (A) and (B) D) Self-similarity in scales Serial coupling Concurrent “on the fly” coupling Renormalization group Multi-scaling Paradigms:

Multi-scale approach Microscales Molecular Dynamics (MD) Mesoscales Kinetic Monte Carlo (KMC) Macroscales KMC and Monte Carlo Diffusion (MCD) Max-Planck-Institut für Plasmaphysik, EURATOM Association ´Intelligent´ coupling necessary

Meso/macro-scales Strong dependence on void sizes and not void fraction Large variation in observed diffusion coefficients standard graphites highly saturated graphite Max-Planck-Institut für Plasmaphysik, EURATOM Association Diffusion coefficients without knowledge of structure are meaningless

Multi-scale modeling of hydrogen transport in porous graphite inclusion of molecules for re-emission, extension to chemical sputtering (Küppers-Hopf-cycle) (collaboration with M. Warrier, Max-Planck-India-Fellowship) PhD (HGF funded): Abha Rai Experiment: P. Franzen, E. Vietzke, J. Vac. Sci. Technology A12(3), 1994 H-atom release limited by detrapping process, not by diffusion Modeling: results matches very well exp. Hydrogen re-emission Max-Planck-Institut für Plasmaphysik, EURATOM Association Temperature (K) Reemitted Flux (%) USB15 EK96 H2H2 H Re-emitted Flux (%) Temperature (K) H 5% Void H 2 5% Void H 9% Void H 2 9% Void

Max-Planck-Institut für Plasmaphysik, EURATOM Association a VERY personal view! technical remarks: open source standard interfaces benchmarking Integrated modeling physics remarks: hierarchical models needed (upgrading, downgrading) validation (experiment, theory) Combination and coupling of more and more codes will not improve the reliability and predictive quality Depending on the problem and the question one needs very different tools (intelligent interpolation, interpretation, basic physics studies, …)

T. Angot et al., University of Provence, Marseille STM of graphite surfaceSimulation Modelling of Hydrogen bombardement of single crystal Max-Planck-Institut für Plasmaphysik, EURATOM Association surface science and low-temperature plasma physics Model systems needed

Summary Max-Planck-Institut für Plasmaphysik, EURATOM Association Multi-scale physics: combination of methods ´Intelligent´ coupling necessary !?? Hierarchy of models (downgrading, upgrading) Real structure of the material to be included Model systems needed Standards for the modules: open source code, interfaces, benchmarking, model validation