Binomial Distributions Section 8.1. The 4 Commandments of Binomial Distributions There are n trials. There are n trials. Each trial results in a success.

Slides:



Advertisements
Similar presentations
Copyright © 2010 Pearson Education, Inc. Slide
Advertisements

Chapter 17 Probability Models
CHAPTER 5 REVIEW.
Sampling Distributions for Counts and Proportions
Sampling Distributions and Sample Proportions
CHAPTER 13: Binomial Distributions
Binomial probability model describes the number of successes in a specified number of trials. You need: * 2 parameters (success, failure) * Number of trials,
AP Statistics: Section 8.1B Normal Approx. to a Binomial Dist.
Chapter – Binomial Distributions Geometric Distributions
AP Statistics Section 9.2 Sample Proportions
Chapter 8 The Binomial and Geometric Distributions
Chapter 5 Several Discrete Distributions General Objectives: Discrete random variables are used in many practical applications. These random variables.
Section 8.1 Binomial Distributions
WARM – UP 1.Phrase a survey or experimental question in such a way that you would obtain a Proportional Response. 2.Phrase a survey or experimental question.
Chapter 5 Sampling Distributions
Sampling Distributions of Proportions
The Distribution of Sample Proportions Section
Notes – Chapter 17 Binomial & Geometric Distributions.
Each child born to a particular set of parents has probability of 0.25 having blood type O. Suppose these parents have 5 children. Let X = number of children.
Chapter 8 The Binomial and Geometric Distributions YMS 8.1
5.5 Distributions for Counts  Binomial Distributions for Sample Counts  Finding Binomial Probabilities  Binomial Mean and Standard Deviation  Binomial.
1 Chapter 8: The Binomial and Geometric Distributions 8.1Binomial Distributions 8.2Geometric Distributions.
Binomial Distributions Calculating the Probability of Success.
AP Statistics Section 8.1: The Binomial Distribution.
AP Statistics: Section 8.1B Normal Approx. to a Binomial Dist.
The Binomial and Geometric Distribution
Lesson Sample Proportions. Knowledge Objectives Identify the “rule of thumb” that justifies the use of the recipe for the standard deviation of.
Section 6.3 Binomial Distributions. A Gaggle of Girls Let’s use simulation to find the probability that a couple who has three children has all girls.
Bernoulli Trials Two Possible Outcomes –Success, with probability p –Failure, with probability q = 1  p Trials are independent.
Binomial Formulas Target Goal: I can calculate the mean and standard deviation of a binomial function. 6.3b h.w: pg 404: 75, 77,
Chapter 17: probability models
The Practice of Statistics Third Edition Chapter 8: The Binomial and Geometric Distributions 8.1 The Binomial Distribution Copyright © 2008 by W. H. Freeman.
The Practice of Statistics, 5th Edition Starnes, Tabor, Yates, Moore Bedford Freeman Worth Publishers CHAPTER 6 Random Variables 6.3 Binomial and Geometric.
There are 4 runners on the New High School team
AP Statistics Chapter 8 Notes. The Binomial Setting If you roll a die 20 times, how many times will you roll a 4? Will you always roll a 4 that many times?
A.P. STATISTICS LESSON SAMPLE PROPORTIONS. ESSENTIAL QUESTION: What are the tests used in order to use normal calculations for a sample? Objectives:
4.2 Binomial Distributions
8.1 The Binomial Distribution
At the end of the lesson, students can: Recognize and describe the 4 attributes of a binomial distribution. Use binompdf and binomcdf commands Determine.
There are 4 runners on the New High School team. The team is planning to participate in a race in which each runner runs a mile. The team time is the sum.
P. 403 – 404 #71 – 73, 75 – 78, 80, 82, 84 #72B: Binary? Yes – Success is a person is left-handed. I: Independent? Yes, since students are selected randomly,
Copyright © 2010 Pearson Education, Inc. Chapter 17 Probability Models.
Section Binomial Distributions For a situation to be considered a binomial setting, it must satisfy the following conditions: 1)Experiment is repeated.
Ch. 18 – Sampling Distribution Models (Day 1 – Sample Proportions) Part V – From the Data at Hand to the World at Large.
Section 8.1 Binomial Distributions AP Statistics.
Notes – Chapter 17 Binomial & Geometric Distributions.
Warm Up When rolling an unloaded die 10 times, the number of time you roll a 1 is the count X of successes in each independent observations. 1. Is this.
Lesson The Normal Approximation to the Binomial Probability Distribution.
Chapter 7: Sampling Distributions Section 7.2 Sample Proportions.
Are You Psychic? Mean and Standard Deviation Remember, to find the mean of a probability distribution, you take the sum of the probabilities times.
Introduction A family plans on having three children. Calculate the probability the family has ALL girls. P(3G) =.125 P(3G) =.125 (.5) 3 =.125 (.5)
Collect 9.1 Coop. Asmnt. &… ____________ bias and _______________ variability.
Section 6.3 Day 1 Binomial Distributions. A Gaggle of Girls Let’s use simulation to find the probability that a couple who has three children has all.
The Binomial Distribution Section 8.1. Two outcomes of interest We use a coin toss to see which of the two football teams gets the choice of kicking off.
+ Binomial and Geometric Random Variables Textbook Section 6.3.
Sampling Distributions Chapter 18. Sampling Distributions A parameter is a number that describes the population. In statistical practice, the value of.
7.4 and 7.5 Obj: Assess normality of a distribution and find the normal approximation to a binomial distribution.
Chapter 8: The Binomial and Geometric Distributions 8.1 – The Binomial Distributions.
Geometric Distributions Section 8.2. The 4 “commandments” of Geometric Distributions Only 2 outcomes for each trial: success or failure. Only 2 outcomes.
The Practice of Statistics Third Edition Chapter 8: The Binomial and Geometric Distributions Copyright © 2008 by W. H. Freeman & Company Daniel S. Yates.
Section 6.2 Binomial Distribution
CHAPTER 14: Binomial Distributions*
CHAPTER 6 Random Variables
Section 9.2 – Sample Proportions
Chapter 5 Sampling Distributions
Advanced Placement Statistics
Chapter 5 Sampling Distributions
8.1 The Binomial Distribution
Day 46 Agenda: DG minutes.
The Binomial Distributions
Presentation transcript:

Binomial Distributions Section 8.1

The 4 Commandments of Binomial Distributions There are n trials. There are n trials. Each trial results in a success or a failure. Each trial results in a success or a failure. The probability of a success, p, is constant from trial to trial. The probability of a success, p, is constant from trial to trial. The trials are independent. The trials are independent. -Knowing the result of one observation tells you nothing about the other observations.

Sampling Distribution of a Count Choose an SRS of size n from a population with proportion p of successes. When the population is much larger than the sample, the count X of successes in the sample has approximately the binomial distribution with parameters n and p. Choose an SRS of size n from a population with proportion p of successes. When the population is much larger than the sample, the count X of successes in the sample has approximately the binomial distribution with parameters n and p. Essentially, it is sometimes sufficient for outcomes of an event to be close enough to independent to use binomial calculations. Essentially, it is sometimes sufficient for outcomes of an event to be close enough to independent to use binomial calculations.

Key formulas If data fits binomial setting, then random variable X = number of successes is called a binomial random variable. And the probability distribution of X is called a binomial distribution. We represent this distribution as B(n,p).

Given a discrete random variable X, the probability distribution function assigns a probability to each value of X. The probabilities must satisfy the rules for probabilities given in Chapter 6 … Given a discrete random variable X, the probability distribution function assigns a probability to each value of X. The probabilities must satisfy the rules for probabilities given in Chapter 6 … P.D.F.

Rule 1: 0 P(A) 1 for any event A. Rule 1: 0 P(A) 1 for any event A. Rule 2: P(S) = 1. Rule 2: P(S) = 1. Rule 3: complement rule; for any event A, Rule 3: complement rule; for any event A, P(A C ) = 1 – P(A) P(A C ) = 1 – P(A) Rule 4: Addition rule: Rule 4: Addition rule: P(A or B) = P(A) + P(B) – P(A and B) P(A or B) = P(A) + P(B) – P(A and B) Rule 5: Multiplication rule: Rule 5: Multiplication rule: P(A and B) = P(A)P(B|A) P(A and B) = P(A)P(B|A) Rules of Probability--Chapter 6

Given a random variable X, the cumulative distribution function of X calculates the sum of the probabilities for 0, 1, 2, …, up to the value X. That is, it calculates the probability of obtaining at most X successes in n trials. Given a random variable X, the cumulative distribution function of X calculates the sum of the probabilities for 0, 1, 2, …, up to the value X. That is, it calculates the probability of obtaining at most X successes in n trials. C.D.F.

Calculator Tips To determine P(X = x) To determine P(X = x) Use binompdf(n, p, x): where n is the number of observations, p is the probability of success. Use binompdf(n, p, x): where n is the number of observations, p is the probability of success. To determine P(X x) To determine P(X x) Use binomcdf(n, p, x): where n is the number of observations, p is the probability of success. Use binomcdf(n, p, x): where n is the number of observations, p is the probability of success. To determine P(X > x) To determine P(X > x) Use 1-binomcdf(n, p, x): where n is the number of observations, p is the probability of success. Use 1-binomcdf(n, p, x): where n is the number of observations, p is the probability of success. To determine P(X < x) To determine P(X < x) Use binomcdf(n, p, x-1): where n is the number of observations, p is the probability of success. Use binomcdf(n, p, x-1): where n is the number of observations, p is the probability of success.

Binomial Setting Example A baseball pitcher throws 30 pitches in an inning. The pitcher throws a strike 60% of the time. A baseball pitcher throws 30 pitches in an inning. The pitcher throws a strike 60% of the time. A) Is this binomial setting? Lets check! 1. Can each observation be categorized as a success or failure? YES: Throwing a strike is a success, throwing a ball (not a strike) is a failure. 2. Are there a fixed number of observations? YES: The pitcher throws 30 pitches. 3. Are all n of the observations independent? YES: While it is possible that one pitch impacts another, it is still safe to assume that they are independent. 4. Is the probability of success the same for each observation? YES: While a pitcher may get tired as the game wears on, thus changing the probability of throwing a strike, it is safe to assume that throughout a season, the probability of throwing a strike is the same.

Binomial Setting Example (cont.) B) How many strikes does the pitcher expect to throw? C) What is the standard deviation? D) What is the probability that the pitcher throws exactly 21 strikes in the inning? E) What is the probability that he throws 15 or fewer strikes? F) What is the probability that he throws more than 11 strikes? np = (30)(0.6) = 18 binompdf(30, 0.6, 21) binomcdf(30, 0.6, 15) – binomcdf(30, 0.6, 11)

What if we are between values? Consider the pitcher scenario. Consider the pitcher scenario. What is the probability that he throws between 12 and 20 strikes? What is the probability that he throws between 12 and 20 strikes? We cant do binomcdf directly or 1-binomcdf We cant do binomcdf directly or 1-binomcdf Try: Try: binomcdf(30, 0.6, 20) – binomcdf(30, 0.6, 11) binomcdf(30, 0.6, 20) – binomcdf(30, 0.6, 11) = =0.8154

Normal Approximation to the Binomial Distribution If X is a count having the binomial distribution with parameters n and p, then when n is larger, X is approximately N( np, ). If X is a count having the binomial distribution with parameters n and p, then when n is larger, X is approximately N( np, ). As a rule of thumb, we can use this approximation when np 10 and n(1-p) 10. As a rule of thumb, we can use this approximation when np 10 and n(1-p) 10. Essentially, we can use this approximation if we expect at least 10 successes and 10 failures. Essentially, we can use this approximation if we expect at least 10 successes and 10 failures. The accuracy of the Normal Approximation improves as the sample size increases The accuracy of the Normal Approximation improves as the sample size increases It is most accurate for any fixed n when p is close to ½ and least accurate when p is near 0 or 1 and the distribution is skewed. It is most accurate for any fixed n when p is close to ½ and least accurate when p is near 0 or 1 and the distribution is skewed.

Normal Approximation Example Many local polls of public opinion use samples of size 400 to 800. Consider a poll of 400 adults in Atlanta that asks the question Do you approve of President Bushs response to the World Trade Center terrorists attacks in September 2001? Suppose we know that President Bushs approval rating on this issue nationally is 92% a week after the incident. Many local polls of public opinion use samples of size 400 to 800. Consider a poll of 400 adults in Atlanta that asks the question Do you approve of President Bushs response to the World Trade Center terrorists attacks in September 2001? Suppose we know that President Bushs approval rating on this issue nationally is 92% a week after the incident. What is the random variable X? What is the random variable X? X = the number of polled people that approve of Bushs response X = the number of polled people that approve of Bushs response

Normal Approx. Ex. Continued Is X binomial? Is X binomial? n = 400, approve = success & not = failure, if polled separately should be independent, with random polling probability should be same for each person polled n = 400, approve = success & not = failure, if polled separately should be independent, with random polling probability should be same for each person polled Calculate the binomial probability that at most 358 of the 400 adults in the Atlanta poll answer Yes to this question. Calculate the binomial probability that at most 358 of the 400 adults in the Atlanta poll answer Yes to this question. binomcdf(400, 0.92, 358) binomcdf(400, 0.92, 358) Find the expected number of people in the sample who indicate approval. Find the standard deviation of X. Find the expected number of people in the sample who indicate approval. Find the standard deviation of X. We expect with We expect with Perform a normal approximation to the question above if possible. Perform a normal approximation to the question above if possible. np=36810, n(1-p)=3210, normalcdf(0, 358, 368, ) np=36810, n(1-p)=3210, normalcdf(0, 358, 368, )