1 Global R&D Effort of Superconducting RF Technology for the International Linear Collider Akira Yamamoto, Marc Ross, and Nick Walker ILC-GDE Project Managers.

Slides:



Advertisements
Similar presentations
Latest Design of ILC ( RDR). 1.3 GHz technology developed by TESLA Collaboration, R&D from 1992 to reduce the cost per MeV by a factor of 20 from current.
Advertisements

ILC PM Meeting S0 Webex Global Design Effort 1 S0/S1 Next Steps Lutz Lilje GDE.
SRF Results and Requirements Internal MLC Review Matthias Liepe1.
Rong-Li Geng Jefferson Lab High Efficiency High Gradient Cavities - Toward Cutting Down ILC Dynamic Heat Load by Factor of Four R.L. Geng, ALCW2015,
Akira Yamamoto Project Manager, SCRF To be presented, April 19, 2009 AAP Review – SCRF Introduction AAP-SCRF-Introduction.
SCRF WebEx Meeting May 14, Report from PMs and APMs 2.Technical Design Phase R&D plan (rev. 3) 1.High Gradient R&D guideline 2.S1-global preparation.
TILC09 AAP Review Lutz Lilje Global Design Effort 1 Cavity Gradient R&D.
Summary of AWG7 SCRF technologies Eiji Kako Wolf-Dietrich Moeller Akira Yamamoto Hitoshi Hayano Tokyo, Nov
1 Global R&D Effort in the Technical Design Phase for the ILC I. Overview II. Superconducting RF Development Akira Yamamoto (KEK) for the ILC-GDE Project.
SCRF Monthly WebEx Meeting June 30, 2010 Agenda 1.Report from PMs (5 min.) 2.General Report from Group Leaders(15 min.) 3.Special Discussions 1.TDP R&D.
Nick Walker, Brian Foster LAL, Orsay WP2: Coordination with the GDE.
Summary of Main Linac SCRF-part H. Hayano, ILC08 at UIC.
STF plan overview H. Hayano, KEK LCPAC 02/25/2005.
Cryomodule Design and R&D during the EDR phase Robert Kephart With input from the T4 CM Collaboration.
1 The Design & Value Costs SRF Technology The XFEL as a Prototype Japan as a Host International Linear Collider Status Mike Harrison.
ILC – Recent progress & Path to Technical Design Report Brian Foster (Hamburg/DESY/Oxford & GDE) Plenary ECFA CERN 25/11/11.
Akira Yamamoto Project Manager, SCRF To be presented, April 19, 2009 AAP Review – SCRF Summary and Discussion AAP-SCRF-Summary.
Cavity Gradient for the R&D and ILC Operation Akira Yamamoto ILC-GDE SCRF Presented at the AD&I meeting held at DESY, Dec. 2-3, 2009 A, Yamamoto,
D.Proch, DESY; GDE meeting Vancouver 06 Technical systems: Cavity Report Overview on costing activities for ILC –European costing method Overview industrial.
AAP Review on SCRF to be prepared Akira Yamamoto, Marc Ross, and Nick Walker ILC-GDE Project Managers To be presented at ILC-10, Beijing, March 26, 2010.
Parallel session summary ML/SCRF L. Lilje, H. Hayano, N. Ohuchi, S. Fukuda, C. Adolphsen (with help of Chris Nantista) TILC09,
ML Planning for ILC08 First Pass + SCRF agenda Chris Adolphsen Hitoshi Hayano.
ML Planning for ILC08 First Pass Chris Adolphsen Hitoshi Hayano.
Global Design Effort 1 S0 Status High-Gradient cavities Lutz Lilje DESY supplement by H. Hayano 04Sep2008 EC
Report of Visiting PKU, Tsinghua U. IHEP Dec. 9 and 10, 2009 Kaoru Yokoya, Marc Ross, and Akira Yamamoto Report to ILC-EC, Dec. 11, 2008.
Harry Carter – LCFOA Meeting 5/1/06 1 LCFOA Technical Briefings: Cryomodules H. Carter Fermilab Technical Division.
Americas Main Linac Cavity and Cryomodule WBS X.9 Resource Proposal.
Status of the International Linear Collider and Importance of Industrialization B Barish Fermilab 21-Sept-05.
SCRF Meeting Fermilab, April 21-25, 2008 Draft agenda updated, April-10 General Agenda: 4/21: Cavity: Gradient R&D, performance, diagnostics (S0), 4/22:
Americas Cavity Specification C.M. Ginsburg (Fermilab) On behalf of the Fermilab cavity crew October 20, 2010.
ILC Accelerator SCRF R&D Plan and Organization Presented by Akira Yamamoto for ILC-GDE Project Managers Marc Ross, Nick Walker, and A. Yamamoto To be presented.
ILC-EDR Kick-off Meeting Cavities Organization and Charges Sept. 19, 2007 Akira Yamamoto ILC-EDR Kick-off Meeting, Cavities Held at DESY, Sept ,
A Satellite Meeting at IPAC-2010 SCRF Cavity Technology and Industrialization Date : May 23, 2010, a full-day meeting, prior to IPAC-2010 Place: Int. Conf.
ILC Cavity Gradient R&D Plan Proposal for Release 5 Rongli Geng for ILC Cavity Group 2jun2010 ILC SCRF WebEx Meeting 6/2/20101ILC SCRF WebEx Meeting.
E. KAKO (KEK) 2009' Oct. 26 ILC KEK Global Design Effort 1 Cavity Preparation for S1-Global Eiji Kako (KEK, Japan)
Industrial Participation & SRF Infrastructure at Fermilab Phil Pfund with input from Harry Carter, Rich Stanek, Mike Foley, Dan Olis, and others.
HiGrade-Kickoff DESY Global Design Effort 1 ILC-HiGrade WP6 High-Gradient cavities Lutz Lilje DESY.
SCRF Cavity WebEx Meeting May 17, 2010 Reports from PM (10 min.) – Brief report from ILC-PAC – Industrialization workshop as IPAC satellite meeting, Kyoto,
23-April-13 ECFA LC2013 Global Design Effort 1 Barry Barish ECFA LC2013 DESY Hamburg, Germany 27-May-13 GDE The path to a TDR.
Global Design Effort - CFS Oct IWLC ML Single Tunnel Cross Section GDE Asian Regional Team KEK A. Enomoto.
ILC R&D at KEK Beam Control Technology –ATF –ATF2 Acceleration Technology –High-gradient Cavities L-band R&D Stand –Linac System  STF –Construction of.
April 29, 2009 M. Ross for PM Global Design Effort 1 GDE Global Program Marc Ross for: Akira Yamamoto, Nick Walker GDE Project Managers Risk Reduction.
Global Design Effort Main Linac Technology System Kick-off Meeting Cavity Summary 20 Sept 2007 DESY Marc Ross.
24-July-10 ICHEP-10 Paris Global Design Effort 1 Barry Barish Paris ICHEP 24-July-10 ILC Global Design Effort.
SCRF Monthly WebEx Meeting Agenda 1.Report from PMs 2.Report from Group Leaders 3.Topics 1.Cavity Gradient and Yield re-evaluation 2.Update of.
Already time to think of upgrading the machine Two options presently discussed/studied Higher luminosity ~10 35 cm -2 s -1 (SLHC) –Needs changes in.
2 nd Workshop of the IHEP 1.3 GHz SRF R&D Project and 2nd IHEP-KEK 1.3 GHz SRF Meeting Opening Remark J. Gao December 2-3, 2009, IHEP, Beijing, China.
Summary of SCRF Meeting Fermilab, April 21-25, 2008 April 25, 2008 General Summary and Further Plan: 4/21: Cavity: Gradient R&D, performance, diagnostics.
SCRF Meeting Fermilab, April 21-25, 2008 Draft agenda updated, April-19 General Agenda: 4/21: Cavity: Gradient R&D, performance, diagnostics (S0), 4/22:
Main Linac Technology (MLT) Meeting To be held through WebEx July 13, 2007.
ML-SCRF: Monthly WebEx Meeting April 4, Reports from PMs (20 min.) GDE activity and meeting plan Summary document of SCRF-Baseline Technical Review.
A Proposal for FJPPL (TYL) Development of Frequency Tuners Optimization and Cryomodule Integration for 1.3 GHz SRF Cavities G. Devanz, F. Nunio, O. Napoly.
SRF Collaboration Shekhar Mishra Fermilab. Overview Charge: Does the laboratory make effective use of collaboration and existing SRF capabilities at other.
17-21 April 09 AAP - Tsukuba Global Design Effort 1 First Results of Geological Investigations of Dubna Siting of Dubna Siting Status of the ILC activity.
Saclay / Orsay visit – (GDE Project Managers) 1 R&D Plan: ‘Engineering Design’ Phase - presentation to Saclay / Orsay Marc Ross, Akira Yamamoto,
Nan Phinney SLAC ILC Worldwide Event, Fermilab, June 12, 2013 (Many slides courtesy of Marc Ross, Akira Yamamoto, Barry Barish) ILC Accelerator A 25-year.
Global Design Effort Controls LLRF EDR Kick Off Meeting View from the Project Management Office Fermilab / ANL August 20, 2007.
16-Nov-08 ILC08 - Chicago Global Design Effort 1 Barry Barish ILC08 - Chicago 16-Nov-08 GDE Status, Overview and Plans ATF-2 Final Doublet System ATF-2.
Fermilab-India Agreements and Collaboration Shekhar Mishra Project-X, International Collaboration Coodinator Fermi National Accelerator Laboratory Batavia,
SCRF WebEx Monthly Meeting Agenda and Reports from PM
SCRF Monthly WebEx Meeting May 20, 2009
SCRF Monthly WebEx Meeting Jan. 12, 2010
ILC-EDR Kick-off Meeting, Cryomodule and Cryogenics
BAW Prep S1 Global Status Pilot Plant Status
Yamamoto WG3: ML-SCRF Parallel Session,
2. SCRF General Preparation for the AD&I Preparation for AAP Review
WG3: Main Linac SCRF(cavity,cryomodule)
ILC Global Design Effort
Nick Walker (DESY) EU GDE Meeting Oxford
Barry Barish Paris ICHEP 24-July-10
Presentation transcript:

1 Global R&D Effort of Superconducting RF Technology for the International Linear Collider Akira Yamamoto, Marc Ross, and Nick Walker ILC-GDE Project Managers Visiting INFN, Frascati, January 22, ILC Global Design Effort

2 Outline Introduction R&D Status Plan for Technical Design Phase Global Plan and Project Management Summary ILC Global Design Effort

A Next Step International Linear Collider (ILC) ILC Global Design Effort

GDE ILC Timeline Reference Design Report (RDR) GDE process TDP 2 LHC physics Ready for Project Submission Tech. Design Phase (TDP) 1 ~100 participants 55 institutes 12 countries 3 regions 4 N. Walker - ILC08 ILC-GDE INFN-Frascati Visiting, Jan. 2009

5 Outline Introduction R&D Status Plan for Technical Design Phase Global Plan and Project Management Summary ILC Global Design Effort

Technical Design Report to be completed by 2012 Reference Design, 2007 >> Technical Design Phase, We are now at the stage of progressing from the RD to TD ILC Global Design Effort

Reference Design Released in Beijing, Feb SC linacs: 2x11 km –for 2x250 GeV Injector centralized –Circular damping rings IR with 14 mrad crossing angle ParameterValue C.M. Energy500 GeV Peak luminosity2x10 34 cm -2 s -1 Beam Rep. rate5 Hz Pulse time duration1 ms Average beam current 9 mA (in pulse) Average field gradient31.5 MV/m # 9-cell cavity14,560 # cryomodule1,680 # RF units ILC Global Design Effort

8 TDP Goals of ILC-SCRF R&D Field Gradient 35 MV/m for cavity performance in vertical test (S0) 31.5 MV/m for operational gradient in cryomodule to build two x 11 km SCRF main linacs Cavity Integration with Cryomodule “Plug-compatible” development to: Encourage “improvement” and creative work in R&D phase Motivate practical ‘Project Implementation’ with sharing intellectual work in global effort Accelerator System Engineering and Tests Cavity-string test in one cryomodule (S1, S1-global) Cryomodule-string test with Beam Acceleration (S2) With one RF-unit containing 3 crymodule ILC Global Design Effort

Presentation for CSIC-CIEMAT 20 January Marc Ross, FermilabILC Global Design Effort 99 Superconducting Cavity R&D Niobium Sheet metal cavity Fabrication: Forming and welding (EBW) Surface Process: Chemical etching and polishing Cleaning Inspection/Tests: Optical Inspection (warm) Thermometry (cold)

Progress in Single Cell Cavity Record of 59 MV/m achieved with the RE cavity with EP, BCP and pure-water rinsing with collaboration of Cornell and KEK ILC Global Design Effort

Status of 9-Cell Cavity Europe “Gradient” ( MV/m) with Ethanol rinse (DESY): Industrial (bulk) EP demonstrated ( MV/m) (DESY) Large-grain cavity (DESY) Surface process with baking in Ar-gas (Saclay) America(s) Gradient distributed (20 – 40 MV/m) with various surface process (Cornell, JLab, Fermilab) Field emission reduced with Ultrasonic Degreasing using Detergent, and “Gradient” improved (JLab) Asia “Gradient”, 36MV/m (LL, KEK-JLab), 32 MV/m (TESLA-like, KEK) Effort in Chinese laboratories in cooperation with KEK, Fermilab, Jlab, and DESY Effort in Indian laboratories in cooperation with Fermilab, KEK ILC Global Design Effort

12 ILC operation : MV/m R&D Status : ~ 30 MV/m to meet XFEL requirement Field Gradient progressed at TESLA 20 % improvement required for ILC ILC Global Design Effort

Industrial EP at DESY/Plansee The average gradient, 36 MV/m, achieved with AC ILC Global Design Effort

Presentation for CSIC-CIEMAT 20 January 2009 Marc Ross, Fermilab 14 Combined Yield of Jlab and DESY Tests 23 tests, 11 cavities One Vendor 48 Tests, 19 cavities ACCEL, AES, Zanon, Ichiro, Jlab 50% Yield 45 % at 35 MV/m being achieved by cavities with a qualified vendor !! 14

15 Outline Introduction R&D Status Plan for Technical Design Phase Global Plan and Project Management Summary ILC Global Design Effort

Plan for High Gradient R&D 1: Research/find cause of gradient limit high resolution camera surface analysis 2: develop countermeasures remove beads & pits, establish surface process 3: verify and integrate countermeasures get statistics ILC Global Design Effort

A New High Resolution, Optical Inspection System camera white LEDhalf mirror EL mirror motor & gear for mirror camera & lens sliding mechanism of camera tilted sheet illumination by Electro-Luminescence perpendicular illumination by LED & half mirror Camera system (7µm/pix) in 50mm diameter pipe. For visual inspection of cavity inner surface. ~600µm beads on Nb cavity 17 Iwashita (Kyoto) and Hayano (KEK) et al. DESY starting to use this system in cooperation with KEK ILC Global Design Effort

Guideline: Standard Procedure and Feedback Loop Standard Fabrication/Process (Optional action) Acceptance Test/Inspection FabricationNb-sheet purchasingChemical component analysis Component (Shape) FabricationOptical inspect., Eddy current Cavity assembly with EBW (tumbling Optical inspection ProcessEP-1 (Bulk: ~150um) Ultrasonic degreasing (detergent) or ethanol rinse High-pressure pure-water rinsingOptical inspection Hydrogen degassing at 600 C (?)750 C Field flatness tuning EP-2 (~20um) Ultrasonic degreasing or ethanol(Flash/Fresh EP) (~5um)) High-pressure pure-water rinsing General assembly Baking at 120 C Cold Test (vertical test) Performance Test with temperature and mode measurement Temp. mappingIf cavity not meet specification Optical inspection ILC Global Design Effort

EP-1 ( um removed) After Fabrication EP-1 (25 um removed) Comparison with each treatment ILC Global Design Effort

DESY: Field Emission Analysis Cavity gradient shifted to High Gradient by ‘ethanol rinse’, except for “lowest two” (due to different reasons) 20MV/m ILC Global Design Effort

Cavity Integration and Tests Europe (EU) –Cryomodule assembly plan for XFEL (DESY/INFN/CEA-Saclay) –Input-coupler industrial assessment for XFEL (LAL-Orsay) –Cryomodule design for S1-global (INFN/KEK) –TTF- 9 mA Test America(s) (AMs) –Cryomodule design –Cryogenic engineering (FNAL in cooperation with CERN) –SCRF Test Facility (FNAL) Asia (AS) –Cryomodule engineering design (KEK/INFN, KEK/IHEP) –Superconducting test facility (KEK) Global effort for Cavity/Cryomodule Assembly –Plug-compatible integration and test : ILC Global Design Effort

Plug-compatible Conditions Plug-compatible interface nearly established ItemCan be flexible Plug-comp. Cavity shapeTeSLA/LL/ RE LengthFixed Beam pipe flangeFixed Suspension pitchFixed TunerBlade/Jack Coupler flange (warm end) Fixed Coupler pitchfixed He –in-line jointTBD

Cavity Shape Design Investigated TESLA –Lower E-peak –Lower risk of field emission LL/IS, RE –Lower B-peak –Potential to reach higher gradient 23 LL: low-loss, IS: Ichiro-shape, RE: re-entrant ILC Global Design Effort

24 Two shields model based on TTF-III Study of the “plug-compatible” cryomodule cross-section One shield model to save fabrication cost ILC Global Design Effort

Global Cooperation: Plug-compatible Design and R&D 25 Global Design Effort Cost driven R & D process Technology transfer to Industry Innovation Intellectual engagement Expert base 25 N. Walker - ILC08

Global Production: Plug-Compatible Production Testing (QA/QC) Free ‘global’ market competition (lowest cost) Maintain intellectual regional expertise base 26 N. Walker - ILC08

Summary of Plug-compatibility in R&D and Construction Phases R&D Phase –Creative work for further improvement with keeping replaceable condition, –Global cooperation and share for intellectual engagement Construction Phase –Keep competition with free market/multiple-suppliers, and effort for const-reduction, (with insurance) –Maintain “intellectual” regional expertise base –Encourage regional centers for fabrication/test facilities with accepting regional features/constraints ILC Global Design Effort

Plug-Compatibility Document ILC Global Design Effort

29 Cavity and Cryomodule Test with Plug Compatibility Cavity integration and the String Test to be organized as a global cooperation (S1-Global): –2 cavities from EU (DESY) and AMs (Fermilab) –4 cavities from AS (KEK (and IHEP)) –Each half-cryomodule from INFN and KEK A practice for the plug-compatible assembly ILC Global Design Effort

General Plan for S1-Global ILC Global Design Effort INFN – KEK cooperation progressed And crucially important

INFN-KEK Cooperation established Signed by INFN president and KEK DG in ILC Global Design Effort 31

Remark and Acknowledgement Progress –Cryomodule design work complete, –Manufacturing in progress at Zanon, Acknowledgements –INFN-LASA’s cooperation to the global cavity- string test program (S1-Global) crucially important and appreciated, –ILC-GDE would thank Prof. C. Pagani and his team for their critical contributions, Cryomodule, cavity package, and subcomponent development as well as training of next generations ILC Global Design Effort 32

SRF Test Facilities N. Walker - ILC08 33  KEK, Japan  DESY  FNAL TTF/FLASH ~1 GeV ILC-like beam ILC RF unit (* lower gradient) NML facility Under construction first beam 2010 ILC RF unit test STF (phase I & II) Under construction first beam 2011 ILC RF unit test

34 TESLA/FLASH at DESY FLASH cryomodules Experiences being gained from TELA/FLAS H are critical inputs for ILC: ILC Global Design Effort

9mA Experiments in TTF/FLASH XFELILCFLASH design FLASH experiment Bunch chargenC # bunches3250 * * 2400 Pulse length ss CurrentmA ILC Global Design Effort

Preliminary Results (2008) FLASH operations records Long bunch trains with 3nC per bunch: –550 bunches at 1MHz –300 bunches at 500KHz –890MeV linac energy All modules running with 800us flat-top and 1GeV total gradient All RF stations with 800us flat top 550 bunches at 1MHz, 3nC/bunch, 890MeV Limited to 1MHz (3mA) during first (preparatory) experiments 6 kW achieved 2009 goal: 36 kW (9mA) ILC Global Design Effort

37 Beam Acceleration Test Plan with RF unit at Fermilab and KEK ILC Global Design Effort

38 Superconducting Magnets for Beam Focusing and Transport Components in Cryomodule –G-integral : 36 T Aperture: 78 mm –Alignment: < 100 nm ILC Global Design Effort

Quadrupole R&D Work at Fermilab and SLAC/CIEMAT ILC Global Design Effort

40 Outline Introduction R&D Status Plan for Technical Design Phase Global Plan and Project Management Summary ILC Global Design Effort

41 ILC-GDE Organization Chart SCRF -ML G-CFS AS EU AM AS ILCSCFALC ILC-GDE Director Regional Directors Project Managers AAP PAC FALC-RG Director’s Office = ~ Central Team = ~ EC Experts Project. M. Office - EDMS - Cost & Schedule - Machine Detector Interface - ILC, XFEL, Project X liaison - ILC Communications ILC Global Design Effort

SCRF Area Organization in TDP as of Sept., 2008 Regional Effort: Harrison, Foster, Yokoya SCRF Technical Effort: Yamamoto, Shidara, and Kerby Institute Institute Leaders Cavity: Process Lilje Lilje Cavity: Integ. Hayano Cryomod ule Ohuchii/C arter CryogenicsPetersonHLRF(LLRF)Fukuda M LI Adolphsen AMsAMsAMsAMsCornellFermilabSLACANLJ-labPadamseeKephartRaubenheimerGerigRimmerPadamseeChampionKellyReece/ChampionAdolphsen Champio n Peterson Adolphsen AdolphsenAdolphsen EUEUEUEUDESYCERNSaclayOlsayINFNCIEMATBrinkmannDelahayeDaelWormserPaganiLilje L. Lilje PratPaganiParmaPieriniTavian ASASASASKEKKoreaIHEP RRCAT/BAR C IUACVECCYokoyaGaoSahni(Sahni)RoyBhandariHayanoGaoHayano Tsuchiya/O huchi Hosoyama / Nakai FukudaHayano ILC Global Design Effort

Project Management in Technical Coordination and Leadship (by PMs) Encourage “extended R&D for cavity gradient (S0)” and integration with establishing “Plug-compatibility” Propose “Cavity-string test with global effort (S1-Global) “ We are developing practical plan for cryomodule string test with accelerator beam (S2) Start to prepare for AAP review in spring, 2009, We are establishing good communication by visiting world- wide SCRF/RF laboratories DESY, CEA/Saclay, LAL/Orsay, CERN, INFN, CSIC/CIEMAT Fermilab,SLAC, Jlab, Cornell, LANL (TRIUMF) KEK, IHEP, Beijing U., Tsinghua U, IUAC, RRCAT, TIFR, VECC BARC, KNU, PAL, ILC Global Design Effort

Project Management Plan in Actions Required: Field gradient (S0) To be re-optimized, based on the R&D progress (2010), Plug-compatibility Common interface conditions to be agreed in LCWS-08 (2008), Overview document in preparation System engineering/test plan, (S1, S2) Work sharing in cavity string in global effort (S1-Global) Accelerator system test with beam Necessary detailed study and re-coordination under limited resources, including schedule Effort for “minimum machine” in view of SCRF (by N. Walker), RF power sources and distribution, Prepare for AAP Review in April, 2009 Global Communication and cooperation with Laboratories & Industries ILC Global Design Effort

Global Plan for SCRF R&D Calender Year Technical Design PhaseTDP-1TDP-2 Cavity Gradient R&D to reach 35 MV/m Process Yield > 50% Production Yield >90% Cavity-string test: with 1 cryomodule Global collab. For System Test with beam 1 RF-unit (3-modulce) FLASH (DESY)STF2 (KEK) NML (FNAL) ILC Global Design Effort

Guideline: Standard Procedure and Feedback Loop Standard Fabrication/Process (Optional action) Acceptance Test/Inspection FabricationNb-sheet purchasingChemical component analysis Component (Shape) FabricationOptical inspect., Eddy current Cavity assembly with EBW (tumbling Optical inspection ProcessEP-1 (Bulk: ~150um) Ultrasonic degreasing (detergent) or ethanol rinse High-pressure pure-water rinsingOptical inspection Hydrogen degassing at 600 C (?)750 C Field flatness tuning EP-2 (~20um) Ultrasonic degreasing or ethanol(Flash/Fresh EP) (~5um)) High-pressure pure-water rinsing General assembly Baking at 120 C Cold Test (vertical test) Performance Test with temperature and mode measurement Temp. mappingIf cavity not meet specification Optical inspection ILC Global Design Effort

(RDR ACD concepts and R&D) Towards a Re-Baselining in 2010 Process –RDR baseline & VALUE element are maintained Formal baseline –Formal review and re-baseline process beginning of 2010 Exact process needs definition Community sign-off mandatory DS def Design Studies Re-Baseline New baseline engineering studies 2012 Rejected elements RDR Baseline (VALUE est.) (RDR ACD concepts and R&D) 47 N. Walker - ILC08

48 Cooperation with EuroXFEL and Other Projects Further SCRF Accelerator Project Plans investigated : Project X at Fermilab, SC Proton Linac at CERN, and ERL at KEK Best effort for common design and cost-effective design ILC Global Design Effort

49 Summary Technical Design Phase in progress: Phase-1: Technical reality to be examined, 35 MV/m with yield 50 % in surface process and with the cavity-string in a cryomodule Plug-compatible crymodule to be examined with global effort. Phase-2: Technical credibility to be verified 35 MV/m with the yield 90 % for 9-cell including fabrication System engineering and beam acceleration with the field gradient MV/m. We aim for Global cooperation with having plug-compatibility, and with a smooth transition to the construction/production phase. Cooperation with world-wide Institutions cricially important ILC Global Design Effort

Acknowledgements We would thank INFN for –accepting our visiting here, today, –Cooperation and contribution in various R&D efforts in SCRF for the ILC, We would specially thank Prof. Carlo Pagani for his kindest guidance and leadership in SCRF design work and critical important, advanced R&D efforts, and Would thank Dr. Susanna Guiducci for all the arrangement ILC Global Design Effort 50