Chapter 16 The Molecular Basis of Inheritance. DNA Structure Rosalind Franklin took diffraction x-ray photographs of DNA crystals In the 1950’s, Watson.

Slides:



Advertisements
Similar presentations
DNA Chapter 16.
Advertisements

DNA: The Genetic Material Chapter The Genetic Material Frederick Griffith, 1928 studied Streptococcus pneumoniae, a pathogenic bacterium causing.
1 DNA: The Genetic Material Chapter The Genetic Material Frederick Griffith, 1928 studied Streptococcus pneumoniae, a pathogenic bacterium causing.
The Molecular Basis of Inheritance
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
The Molecular Basis of Inheritance
Evidence that DNA is the Genetic Material
Chapter 16.  In 1953, James Watson and Francis Crick introduced a double-helical model for the structure of deoxyribonucleic acid, or DNA  Hereditary.
Overview: Life’s Operating Instructions
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
Concept 16.2: Many proteins work together in DNA replication and repair It has not escaped our notice that the specific pairing we have postulated immediately.
Chapter 16: Molecular Basis of Inheritance. DNA is the genetic material Early in the 20th century, the identification of the molecules of inheritance.
The Molecular Basis of Inheritance
Chapter 16 The Molecular Basis of Inheritance. Fig In 1953, James Watson and Francis Crick introduced an elegant double-helical model for the structure.
DNA Replication: A Closer Look
Ch 16 – The Molecular Basis of Inheritance
History Of DNA and Replication
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings The Basic Principle: Base Pairing to a Template Strand Since the two strands of.
The MOLECULAR BASIS OF INHERITANCE
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings.
Fig Figure 16.1 How was the structure of DNA determined?
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings DNA Replication chapter 16 continue DNA Replication a closer look p.300 DNA: Origins.
DNA: The Genetic Material Chapter The Genetic Material Griffith’s results: - live S strain cells killed the mice - live R strain cells did not kill.
Chapter 16: The Molecular Basis of Inheritance (DNA)
BIO 2, Lecture 6 LIFE’S INFORMATION MOLECULE I; DNA STRUCTURE AND REPLICATION.
Chapter 16 Molecular Basis of Inheritance. Deciphering DNA.
Chapter 15: Molecular Basis of Inheritance. DNA is the genetic material Early in the 20th century, the identification of the molecules of inheritance.
DNA Structure & Replication AP Biology. What is a Nucleotide?
THE MOLECULAR BASIS OF INHERITANCE Chapter 16. THE SEARCH FOR GENETIC MATERIAL Frederick Griffith (1928) – something changed normal cells into pneumonia.
16.2 DNA Replication.
Chapter 16: DNA Structure and Function n The history of early research leading to discovery of DNA as the genetic material, the structure of DNA, and its.
DNA and Replication 1. History of DNA 2  Early scientists thought protein was the cell’s hereditary material because it was more complex than DNA 
DNA replication Chapter 16. Figure 16.1 History of DNA Griffith Mice & Strep Transformation External DNA taken in by cell.
Living S cells (control) Living R cells (control) Heat-killed S cells (control) Mixture of heat-killed S cells and living R cells Mouse dies Mouse healthy.
Evidence That DNA Can Transform Bacteria The discovery of the genetic role of DNA began with research by Frederick Griffith in 1928 Griffith worked with.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
The Molecular Basis of Inheritance
1 History of DNA copyright cmassengale. 2 History of DNA Early scientists thought protein was the cell’s hereditary material because it was more complex.
In 1953, James Watson and Francis Crick introduced an elegant double-helical model for the structure of deoxyribonucleic acid, or DNA DNA, the substance.
DNA replication Chapter 16. Summary of history Griffith Mice & Strep Transformation External DNA taken in by cell.
Ms. Whipple – Brethren Christian High School.  When T. H. Morgan’s group showed that genes are located on chromosomes, the two components of chromosomes—DNA.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
Fig Fig Living S cells (control) Living R cells (control) Heat-killed S cells (control) Mixture of heat-killed S cells and living R cells.
The Molecular Basis of Inheritance.  Your DNA – contained in 46 chromosomes you inherited from your parents in mitochondria you inherited from your mother.
CHAPTER 16 The Molecular Basis of Inheritance. Life’s Operating Instructions In 1953, James Watson and Francis Crick introduced an elegant double-helical.
History of DNA Biology AP Todeschini. Race to Discover By the mid 20 th century genetics was well understood but he molecule in which it was conserved.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
The Molecular Basis of Inheritance
Animation: Origins of Replication
The Molecular Basis of Inheritance
The Molecular Basis of Inheritance
The Molecular Basis of Inheritance
DNA and Replication.
Figure 16.1 Figure 16.1 How was the structure of DNA determined?
Chapter 16 DNA.
The Molecular Basis of Inheritance
Mixture of heat-killed S cells and living R cells
DNA Replication.
Single-strand binding protein Overall directions of replication
copyright cmassengale
5 end 3 end 3 end 5 end Hydrogen bond 3.4 nm 1 nm 0.34 nm (a)
Evidence that DNA is the Genetic Material
The Molecular Basis of Inheritance
The Molecular Basis of Inheritance
The Molecular Basis of Inheritance
Chapter The Molecular Basis of Inheritance
The Molecular Basis of Inheritance
The Molecular Basis of Inheritance
Presentation transcript:

Chapter 16 The Molecular Basis of Inheritance

DNA Structure Rosalind Franklin took diffraction x-ray photographs of DNA crystals In the 1950’s, Watson & Crick built the first model of DNA using Franklin’s x-rays

Rosalind FranklinFrances Crick & James Watson X-ray diffraction photograph of DNA, 1953 Proposed double helix model 1953

Concept 16.1: DNA is the genetic material Early in the 20th century, the identification of the molecules of inheritance loomed as a major challenge to biologists Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

The Search for the Genetic Material: Scientific Inquiry When T. H. Morgan’s group showed that genes are located on chromosomes, the two components of chromosomes—DNA and protein—became candidates for the genetic material The key factor in determining the genetic material was choosing appropriate experimental organisms The role of DNA in heredity was first discovered by studying bacteria and the viruses that infect them Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

Evidence That DNA Can Transform Bacteria The discovery of the genetic role of DNA began with research by Frederick Griffith in 1928 Griffith worked with two strains of a bacterium, one pathogenic and one harmless Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

When he mixed heat-killed remains of the pathogenic strain with living cells of the harmless strain, some living cells became pathogenic He called this phenomenon transformation, now defined as a change in genotype and phenotype due to assimilation of foreign DNA Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

Fig RESULTS EXPERIMENT

In 1944, Oswald Avery, Maclyn McCarty, and Colin MacLeod announced that the transforming substance was DNA Their conclusion was based on experimental evidence that only DNA worked in transforming harmless bacteria into pathogenic bacteria Many biologists remained skeptical, mainly because little was known about DNA

Evidence That Viral DNA Can Program Cells More evidence for DNA as the genetic material came from studies of viruses that infect bacteria Such viruses, called bacteriophages (or phages), are widely used in molecular genetics research Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings Animation: Phage T2 Reproductive Cycle Animation: Phage T2 Reproductive Cycle

Fig Bacterial cell Phage head Tail sheath Tail fiber DNA 100 nm

In 1952, Alfred Hershey and Martha Chase performed experiments showing that DNA is the genetic material of a phage known as T2 To determine the source of genetic material in the phage, they designed an experiment showing that only one of the two components of T2 (DNA or protein) enters an E. coli cell during infection They concluded that the injected DNA of the phage provides the genetic information Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings Animation: Hershery-Chase Experiment Animation: Hershery-Chase Experiment

Fig EXPERIMENT Phage DNA Bacterial cell Radioactive protein Radioactive DNA Batch 1: radioactive sulfur ( 35 S) Batch 2: radioactive phosphorus ( 32 P)

Fig EXPERIMENT Phage DNA Bacterial cell Radioactive protein Radioactive DNA Batch 1: radioactive sulfur ( 35 S) Batch 2: radioactive phosphorus ( 32 P) Empty protein shell Phage DNA

Fig EXPERIMENT Phage DNA Bacterial cell Radioactive protein Radioactive DNA Batch 1: radioactive sulfur ( 35 S) Batch 2: radioactive phosphorus ( 32 P) Empty protein shell Phage DNA Centrifuge Pellet Pellet (bacterial cells and contents) Radioactivity (phage protein) in liquid Radioactivity (phage DNA) in pellet

Additional Evidence That DNA Is the Genetic Material It was known that DNA is a polymer of nucleotides, each consisting of a nitrogenous base, a sugar, and a phosphate group In 1950, Erwin Chargaff reported that DNA composition varies from one species to the next This evidence of diversity made DNA a more credible candidate for the genetic material Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings Animation: DNA and RNA Structure Animation: DNA and RNA Structure

Chargaff’s rules state that in any species there is an equal number of A and T bases, and an equal number of G and C bases Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

Fig Sugar–phosphate backbone 5 end Nitrogenous bases Thymine (T) Adenine (A) Cytosine (C) Guanine (G) DNA nucleotide Sugar (deoxyribose) 3 end Phosphate

Fig. 16-7a Hydrogen bond 3 end 5 end 3.4 nm 0.34 nm 3 end 5 end (b) Partial chemical structure(a) Key features of DNA structure 1 nm

Fig Cytosine (C) Adenine (A)Thymine (T) Guanine (G)

Concept 16.2: Many proteins work together in DNA replication and repair The relationship between structure and function is manifest in the double helix Watson and Crick noted that the specific base pairing suggested a possible copying mechanism for genetic material Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

The Basic Principle: Base Pairing to a Template Strand Since the two strands of DNA are complementary, each strand acts as a template for building a new strand in replication In DNA replication, the parent molecule unwinds, and two new daughter strands are built based on base-pairing rules Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings Animation: DNA Replication Overview Animation: DNA Replication Overview

Fig A T G C TA TA G C (a) Parent molecule

Fig A T G C TA TA G C A T G C T A T A G C (a) Parent molecule (b) Separation of strands

Fig A T G C TA TA G C (a) Parent molecule AT GC T A T A GC (c) “Daughter” DNA molecules, each consisting of one parental strand and one new strand (b) Separation of strands A T G C TA TA G C A T G C T A T A G C

Watson and Crick’s semiconservative model of replication predicts that when a double helix replicates, each daughter molecule will have one old strand (derived or “conserved” from the parent molecule) and one newly made strand Competing models were the conservative model (the two parent strands rejoin) and the dispersive model (each strand is a mix of old and new) Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

Fig Parent cell First replication Second replication (a) Conservative model (b) Semiconserva- tive model (c) Dispersive model

Experiments by Matthew Meselson and Franklin Stahl supported the semiconservative model They labeled the nucleotides of the old strands with a heavy isotope of nitrogen, while any new nucleotides were labeled with a lighter isotope Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

The first replication produced a band of hybrid DNA, eliminating the conservative model A second replication produced both light and hybrid DNA, eliminating the dispersive model and supporting the semiconservative model Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

Fig a EXPERIMENT RESULTS Bacteria cultured in medium containing 15 N Bacteria transferred to medium containing 14 N DNA sample centrifuged after 20 min (after first application) DNA sample centrifuged after 20 min (after second replication) Less dense More dense

Fig b CONCLUSION First replicationSecond replication Conservative model Semiconservative model Dispersive model

DNA Replication: A Closer Look The copying of DNA is remarkable in its speed and accuracy More than a dozen enzymes and other proteins participate in DNA replication Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

Getting Started Replication begins at special sites called origins of replication, where the two DNA strands are separated, opening up a replication “bubble” A eukaryotic chromosome may have hundreds or even thousands of origins of replication Replication proceeds in both directions from each origin, until the entire molecule is copied Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings Animation: Origins of Replication Animation: Origins of Replication

Fig a Origin of replication Parental (template) strand Daughter (new) strand Replication fork Replication bubble Double- stranded DNA molecule Two daughter DNA molecules (a) Origins of replication in E. coli 0.5 µm

Fig b 0.25 µm Origin of replicationDouble-stranded DNA molecule Parental (template) strand Daughter (new) strand Bubble Replication fork Two daughter DNA molecules (b) Origins of replication in eukaryotes

36 DNA Replication Before new DNA strands can form, there must be RNA primers present to start the addition of new nucleotides Primase is the enzyme that synthesizes the RNA Primer DNA polymerase can then add the new nucleotides

DNA Replication Begins at Origins of ReplicationBegins at Origins of Replication Two strands open forming Replication Forks (Y-shaped region)Two strands open forming Replication Forks (Y-shaped region) New strands grow at the forksNew strands grow at the forks 3’ 5’ 3’ 5’

DNA Replication

As the 2 DNA strands open at the origin, Replication Bubbles form Prokaryotes (bacteria) have a single bubble Eukaryotic chromosomes have MANY bubbles

DNA Replication Enzyme Helicase unwinds and separates the 2 DNA strands by breaking the weak hydrogen bonds Single-Strand Binding Proteins attach and keep the 2 DNA strands separated and untwisted

DNA Replication Enzyme Topoisomerase attaches to the 2 forks of the bubble to relieve stress on the DNA molecule as it separates

Fig Topoisomerase Helicase Primase Single-strand binding proteins RNA primer

DNA Replication Before new DNA strands can form, there must be RNA primers present to start the addition of new nucleotides Primase is the enzyme that synthesizes the RNA Primer DNA polymerase can then add the new nucleotides

DNA Replication DNA polymerase can only add nucleotides to the 3’ end of the DNA This causes the NEW strand to be built in a 5’ to 3’ direction RNA Primer DNA Polymerase Nucleotide 5’ 3’ Direction of Replication

Synthesis of the New DNA Strands  The Leading Strand is synthesized as a single strand from the point of origin toward the opening replication fork RNA Primer DNA Polymerase Nucleotides 3’5’

Synthesis of the New DNA Strands  The Lagging Strand is synthesized discontinuously against overall direction of replication  This strand is made in MANY short segments It is replicated from the replication fork toward the origin RNA Primer Leading Strand DNA Polymerase 5’5’ 5’ 3’ Lagging Strand 5’ 3’

Lagging Strand Segments  Okazaki Fragments - series of short segments on the lagging strand  Must be joined together by an enzyme Lagging Strand RNAPrimerDNAPolymerase 3’ 5’ Okazaki Fragment

Joining of Okazaki Fragments The enzyme Ligase joins the Okazaki fragments together to make one strand Lagging Strand Okazaki Fragment 2 DNA ligase Okazaki Fragment 1 5’ 3’

Replication of Strands Replication Fork Point of Origin

Proofreading New DNA DNA polymerase initially makes about 1 in 10,000 base pairing errors DNA polymerases proofread and correct these mistakes The new error rate for DNA that has been proofread is 1 in 1 billion base pairing errors

DNA Damage & Repair Chemicals & ultraviolet radiation damage the DNA in our body cells Cells must continuously repair DAMAGED DNA Excision repair occurs when any of over 50 repair enzymes remove damaged parts of DNA DNA polymerase and DNA ligase replace and bond the new nucleotides together

Fig Nuclease DNA polymerase DNA ligase

Replicating the Ends of DNA Molecules Limitations of DNA polymerase create problems for the linear DNA of eukaryotic chromosomes The usual replication machinery provides no way to complete the 5 ends, so repeated rounds of replication produce shorter DNA molecules Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

Fig Ends of parental DNA strands Leading strand Lagging strand Last fragment Previous fragment Parental strand RNA primer Removal of primers and replacement with DNA where a 3 end is available Second round of replication New leading strand New lagging strand Further rounds of replication Shorter and shorter daughter molecules

Fig Leading strand Overview Origin of replication Lagging strand Leading strandLagging strand Primer Overall directions of replication Origin of replication RNA primer “Sliding clamp” DNA poll III Parental DNA

Fig a Overview Leading strand Lagging strand Origin of replication Primer Overall directions of replication

Fig b Origin of replication RNA primer “Sliding clamp” DNA pol III Parental DNA

Fig Overview Origin of replication Leading strand Lagging strand Overall directions of replication Template strand RNA primer Okazaki fragment Overall direction of replication

Fig a Overview Origin of replication Leading strand Lagging strand Overall directions of replication 1 2

Fig b1 Template strand

Fig b2 Template strand RNA primer

Fig b3 Template strand RNA primer Okazaki fragment

Fig b4 Template strand RNA primer Okazaki fragment

Fig b5 Template strand RNA primer Okazaki fragment

Fig b6 Template strand RNA primer Okazaki fragment Overall direction of replication

Fig Overview Origin of replication Leading strand Lagging strand Overall directions of replication Leading strand Lagging strand Helicase Parental DNA DNA pol III PrimerPrimase DNA ligase DNA pol III DNA pol I Single-strand binding protein

The DNA Replication Complex The proteins that participate in DNA replication form a large complex, a “DNA replication machine” The DNA replication machine is probably stationary during the replication process Recent studies support a model in which DNA polymerase molecules “reel in” parental DNA and “extrude” newly made daughter DNA molecules Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings Animation: DNA Replication Review Animation: DNA Replication Review

Eukaryotic chromosomal DNA molecules have at their ends nucleotide sequences called telomeres Telomeres do not prevent the shortening of DNA molecules, but they do postpone the erosion of genes near the ends of DNA molecules It has been proposed that the shortening of telomeres is connected to aging Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

Fig µm

If chromosomes of germ cells became shorter in every cell cycle, essential genes would eventually be missing from the gametes they produce An enzyme called telomerase catalyzes the lengthening of telomeres in germ cells Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

The shortening of telomeres might protect cells from cancerous growth by limiting the number of cell divisions There is evidence of telomerase activity in cancer cells, which may allow cancer cells to persist Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

Concept 16.3 A chromosome consists of a DNA molecule packed together with proteins The bacterial chromosome is a double- stranded, circular DNA molecule associated with a small amount of protein Eukaryotic chromosomes have linear DNA molecules associated with a large amount of protein In a bacterium, the DNA is “supercoiled” and found in a region of the cell called the nucleoid Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

Chromatin is a complex of DNA and protein, and is found in the nucleus of eukaryotic cells Histones are proteins that are responsible for the first level of DNA packing in chromatin Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings Animation: DNA Packing Animation: DNA Packing

Fig a DNA double helix (2 nm in diameter) Nucleosome (10 nm in diameter) Histones Histone tail H1 DNA, the double helixHistones Nucleosomes, or “beads on a string” (10-nm fiber)

Fig b 30-nm fiber Chromatid (700 nm) LoopsScaffold 300-nm fiber Replicated chromosome (1,400 nm) 30-nm fiber Looped domains (300-nm fiber) Metaphase chromosome

Chromatin is organized into fibers 10-nm fiber – DNA winds around histones to form nucleosome “beads” – Nucleosomes are strung together like beads on a string by linker DNA 30-nm fiber – Interactions between nucleosomes cause the thin fiber to coil or fold into this thicker fiber Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

300-nm fiber – The 30-nm fiber forms looped domains that attach to proteins Metaphase chromosome – The looped domains coil further – The width of a chromatid is 700 nm Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

Most chromatin is loosely packed in the nucleus during interphase and condenses prior to mitosis Loosely packed chromatin is called euchromatin During interphase a few regions of chromatin (centromeres and telomeres) are highly condensed into heterochromatin Dense packing of the heterochromatin makes it difficult for the cell to express genetic information coded in these regions Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

Histones can undergo chemical modifications that result in changes in chromatin organization – For example, phosphorylation of a specific amino acid on a histone tail affects chromosomal behavior during meiosis Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

Fig RESULTS Condensin and DNA (yellow) Outline of nucleus Condensin (green) DNA (red at periphery) Normal cell nucleus Mutant cell nucleus

You should now be able to: 1.Describe the contributions of the following people: Griffith; Avery, McCary, and MacLeod; Hershey and Chase; Chargaff; Watson and Crick; Franklin; Meselson and Stahl 2.Describe the structure of DNA 3.Describe the process of DNA replication; include the following terms: antiparallel structure, DNA polymerase, leading strand, lagging strand, Okazaki fragments, DNA ligase, primer, primase, helicase, topoisomerase, single-strand binding proteins Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

4.Describe the function of telomeres 5.Compare a bacterial chromosome and a eukaryotic chromosome Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings